4.4 Lathund till Logaritmlagarna & Logaritmer med olika baser
Från Mathonline
Version från den 15 april 2017 kl. 14.58 av Taifun (Diskussion | bidrag)
| << Förra avsnitt | Genomgång | Övningar | Lathund | Nästa avsnitt >> |
Logaritmlagarna
Första potenslagen:
\( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad \)
Andra potenslagen:
\( \qquad\qquad\qquad\;\;\, \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad \)
Tredje potenslagen:
\( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad \)
Lagen om nollte potens:
\( \qquad\qquad\qquad\quad a\,^0 \; = \; 1 \qquad \)
Lagen om negativ exponent:
\( \qquad\qquad\qquad\;\, a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad \)
Potens av en produkt:
\( \qquad\qquad\;\;\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad \)
Potens av en kvot:
\( \qquad\qquad\quad\;\; \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad \)