

Algoritmer, data-

strukturer & design patterns

Med C#, relationsdatabaser och SQL

TechPages Förlag AB

Med övningar,
fullständiga lösningar

&
projektuppgifter

 2

Innehåll

 Ämne Sida Program/Algoritm

Kapitel 1 Algoritmer och programmering 5

1.1 Programmeringens historia 6
- Från maskinkod till Assembler 6

1.2 Olika paradigm inom programmering 11
- Paradigmskifte 14

1.3 Algoritmer och deras beskrivning 15
- Historiens första algoritm 15
- Definition och exempel på algoritmer 16
- Olika sätt att beskriva algoritmer 18

1.4 Traditionell design pattern med flödesschema 20
- Pseudokod till algoritmen Morgonsyssla 20 Morgonsyssla

- Kontrollstrukturer i algoritmer 22
- Flödesschema till algoritmen Morgonsyssla 23

1.5 Tillägg av C# i Visual Studio 25

1.6 C# Console Applications 26

1.7 De enkla datatyperna i C# 31 PrimitivesCs

1.8 Inläsning av data 34 InputCs

- Metoden ReadLine() 35
- Villkorlig initiering 36 (Un)CondInit

1.9 Collatz algoritmen 39 Collatz

- Metoder och program i C# 41 Collatz_mod

- Modularisering av Collatz 42 Collatz_Test

1.10 Algoritm för platsbyte 44 MiniSort

- Försök att modularisera MiniSort 45 NoSort

1.11 Parameteröverföring i metoder 48
- Värdeanrop (Call by value) 48 CallByVal

- Referensanrop (Call by reference) 50 CallByRef

- Modularisering av MiniSort 42 Swapping

1.12 In- och utparametrar 53 OutParam

Övningar till kapitel 1 56

Kapitel 2 Logik för blivande programmerare 61

2.1 Logiska operatorer 62 AND_OR

- Sanningstabeller 64

2.2 Datatypen bool 67 TruthTab

2.3 NEGATION som logisk operator 69 GuessNEG

- Logiska uttryck 71

2.4 Programserien Testa lösenord 73 Passwd

­ Kombination av NEGATION, OCH, ELLER 75 PasswdCaps

­ De Morgans lagar 77

 3

 Ämne Sida Program/Länk

2.5 Mängdlära och logik 78 Mängder

­ Mängdoperationer och deras logik 78

­ Cartesisk produkt 82

Övningar till kapitel 2 83

Kapitel 3 Datastrukturer och abstrakta datatyper 86

3.1 Vad är objektorienterad programmering? 87

3.2 Objektorienterad design med UML 93

­ Projekt Lönespecifikation 93

­ Kundens kravspecifikation 93

­ UML design och modellering i fyra steg 93

3.3 Array som objekt 97 ArrayObj

- foreach-satsen 101

3.4 Hantering av array med referens 104 ArrayRef

3.5 Array av referenser 106 ArrayOfRef

3.6 Array som parameter i metoder 110 ArrayParam

3.7 Hantering av slumptal i C# 114 DoRand

- Array av slumptal 115 RandArray

3.8 Sökning och sortering 117 Search

- Bubbelsortering 120 Bubble

3.9 Generiska metoder 123 G_Bubble

3.10 Listor 128 Lista

- Klassen RandList 129 RandList

- foreach i listor 130 Print

Övningar till kapitel 3 132

Kapitel 4 Tillämpningar 134

4.1 Kryptering av strängar 135 EncryptStr

4.2 Kryptering av text, teckenvis 138 EncryptChar

4.3 Filhantering 141 WriteReadFile

- Append 144 AppendFile

4.4 Slumplösenord 146 RandPasswdTest

4.5 Kryptering av filer 150 EncryptFile

Övningar till kapitel 4 155

Kapitel 5 Datastrukturer i relationsdatabaser 157 Databaser

5.1 Introduktion till databaser 158
5.2 Relationsdatabaser 160

­ Modularisering 160

­ Liknelse med klass och objekt 162

­ Vad är en relation i databaser? 163

­ Primär- och främmande nycklar 167

http://www.taifun.se/images/stories/Mangder.pdf
http://www.taifun.se/images/stories/Databaser.pdf

 4

 Ämne Sida Program/Länk

5.3 Introduktion till SQL 168

­ Databashanterare 168

­ Klient – Server-modellen 169

­ SQL – databasers språk 171

­ SELECT-satsen 172

­ CREATE TABLE-satsen 177
5.4 Vår första SQL Server databas 179 FirstDatabase

­ Att koppla upp sig till SQL Servern 180

­ Att visa databasens innehåll 183
5.5 En SQL klient i C# 185 SQLclient

­ Att skriva och exekvera egna SQL satser 187

­ Grafiskt gränssnitt till SQL klienten 192
5.6 Att skapa och designa en databas i C# 197 Kursverksamhet

­ Databasmodellering 198

­ Att skapa databasen Kursverksamhet 198

­ Att skapa tabeller i databasen 199

­ Att koppla projektets Dataset till databasen 202

­ Att skapa relationer mellan tabeller 205

­ Att lägga in data i tabellerna 207
5.7 Att förse databasen med funktionaliteter 210 AddressBook

Övningar till kapitel 5 216

Fullständiga lösningar till alla övningar (Facit) 222

Projektuppgifter

 Kalkylatorn 59

 Kryptering av databas 156

 Human resources 218

 Kaffeautomaten 219

Programförteckning 245

Register 247

 5

Kapitel 1

Algoritmer och programmering

 Ämne Sida Program/Algoritm

1.1 Programmeringens historia 6
- Från maskinkod till Assembler 6

1.2 Olika paradigm inom programmering 11
- Paradigmskifte 14

1.3 Algoritmer och deras beskrivning 15
- Historiens första algoritm 15
- Exempel på algoritmer 16
- Definition av algoritm 17
- Olika sätt att beskriva en algoritm 18

1.4 Design pattern med flödesschema 20
- Pseudokod till algoritmen Morgonsyssla 20 Morgonsyssla

- Kontrollstrukturer i algoritmer 22
- Flödesschema till algoritmen Morgonsyssla 23

1.5 Tillägg av C# i Visual Studio 25

1.6 De enkla datatyperna i C# 31 PrimitivesCs

1.7 Inläsning av data 34 InputCs

- Metoden ReadLine() 35
- Villkorlig initiering 36 (Un)CondInit

1.8 Collatz algoritmen 39 Collatz

- Metoder och program i C# 41 Collatz_mod

- Modularisering av Collatz 42 Collatz_Test

1.9 Algoritm för platsbyte 44 MiniSort

- Försök att modularisera MiniSort 45 NoSort

1.10 Parameteröverföring i metoder 48
- Värdeanrop (Call by value) 48 CallByVal

- Referensanrop (Call by reference) 50 CallByRef

- Modularisering av MiniSort 42 Swapping

1.11 In- och utparametrar 53 OutParam

 Övningar till kapitel 1 56

 6

1.1 Programmeringens historia

Programmeringens historia skulle kunna fylla en hel bok. Vi måste nöja oss med ett

urval. Därför tar vi endast upp de mest kända programspråken. Denna framställning

gör alltså inte alls något anspråk på fullständighet. Samtidigt ska den förklara varför

det finns flera hundra olika programspråk. Det är funktionaliteten som är avgörande.

Från vävstolarna till John von Neumann

Redan på 1800-talet programmerade man vävstolarna med jättelika slags trähålkort –

en form av manuell programmering. Speldosor av olika slag vars melodier är förpro-

grammerade och stansade i cylinderformiga metalltrummor som rullar över en spik

(1800-talets iPhones!), är ett annat exempel på manuell programmering. Även när de

första datorerna konstruerades på 1930/40-talet, skedde all programmering manuellt.

Man matade de stora maskinerna med både information (data) och instruktion (pro-

gram) för att åstadkomma en liten beräkning. Dessa jätteapparater med en bråkdel av

datorkraften hos en modern PC – en av dem: 35 ton och 16 meter lång – kunde lagra

endast data. Men att även kunna lagra instruktioner, var inte löst än.

Den tekniska innovation som inledde programmeringens historia i modern bemärkel-

se var John von Neumanns datormodell: 1944 lyckades han konstruera en dator som

kunde lagra både data och instruktioner. De matades in via hålkort och kunde sedan

bearbetas och t.o.m. ändras i datorn. John von Neumann-modellen såg ut så här:

 Utdata

 Indata

 Program

John von Neumanns modell var ett genombrott i programmeringens historia. Än

idag fungerar i princip exekvering av kod i datorns processor enligt denna modell:

Kör man ett program laddas koden från hårddisken, där det lagrats i en fil, till

datorns primärminne. Indata matas in från tangentbordet eller hämtas från en annan

fil. I datorns processor bearbetas indata enligt programmets instruktioner, utdata

produceras och matas ut om det önskas. Enda skillnaden från idag: då bestod in-

struktionerna av långa talkedjor som omvandlades till ettor och nollor, dvs man

programmerade i maskinkod, ett språk som datorns processor förstod. Idag använ-

der vi källkod i något programmeringsspråk.

Från maskinkod till Assembler

Så småningom kom man på idén att använda sig av kortkommandon på engelska

som motsvarade instruktionerna i talform. Ett program tolkade sedan kommandona

Dator

Primärminnet

 7

till maskinkod. Programmet kallades assembler eller assemblator. Kortkommandona

var de första nyckelorden av programmeringsspråket Assembler.

50-talet Assembler betecknas som lågnivåspråk eftersom det är nära datorns

språk utan att vara maskinkod. Fördelen med Assembler är att det är

snabbt. Än idag finns det ingen kod skriven av människan som kan köras

på datorn snabbare. Nackdelen med Assembler är att det inte finns ett

språk som heter så, utan varje processor har sitt eget assemblerspråk. Dvs

program skrivet för en datortyp kan inte köras på en annan. På 40-talet

var datorerna tekniska underverk, byggda för hand. Varje dator hade sin

egen programmerare, oftast tillverkaren själv som var specialiserad på

just sin maskins assemblerspråk. I längden var detta ohållbart. Lösningen

var att komma bort från maskinberoende språk.

De första högnivåspråken

1957 FORTRAN = FORmula TRANslator är historiens första högnivåspråk i

den bemärkelsen att det ligger nära människans språk. Avståndet till ma-

skinkod är större än hos Assembler. Därför måste en källkod i Fortran

först översättas till maskinkod. Denna översättning kallas kompilering

och är mer invecklad än assemblering. Den nya maskinkod som direkt

kan köras, är mycket större än källkoden och lagras separat på hårddis-

ken. Fortran är till skillnad från Assembler ett kompilerande språk. Des-

sutom är det som namnet antyder, i första hand inriktat på beräkning av

matematiska formler. Än idag används fortranprogram av ingenjörer och

vetenskapsmän som behöver snabba beräkningar. Men det finns även ad-

ministrativa tillämpningar av Fortran. Språket har utvecklats och mark-

nadsförts av företaget IBM.

1959 COBOL = COmmon Business Oriented Language är, som namnet säger,

specialiserat på administrativa och ekonomiska tillämpningar. Det kräver

hantering av stora datamängder vilket Cobol är bra på. Många stora ban-

ker och försäkringsbolag har kvar sina program som en gång var skrivna i

Cobol. Även om det numera finns modernare språk, håller man ofta fast

vid det gamla pga de stora kostnader som ett byte skulle innebära. Även

Cobol är ett högnivåspråk och därmed kompilerande. Cobol är utvecklat

av USA:s försvarsdepartement i samarbete med den amerikanska datorin-

dustrin.

1960 ALGOL = ALGOrithmic Language är det första språk som utvecklades i

Europa. Det hade akademisk bakgrund: Initiativet låg hos det tyska Ge-

sellschaft für Angewandte Mathematik und Mechanik (GAMM). Man var

ute efter ett verktyg för att utnyttja datorkraften för teknisk-vetenskapliga

beräkningar på ett mer strukturerat sätt än Fortran. Beräkningarna skulle

baseras på numeriska algoritmer snarare än matematiska formler. Algol

som var ett kompilerande högnivåspråk, berikade programmeringen med

många nya idéer och introducerade bl.a. kontrollstrukturer som används i

 8

algoritmer. Dessa har tagits över och vidareutvecklats i de moderna pro-

gramspråken. Algol själv används inte så mycket idag, inte minst pga

brist på marknadsföring.

1963 BASIC = Beginners All-purpose Symbolic Instruction Code är ett av de

få högnivåspråk som inte är kompilerande utan interpreterande. Dvs käll-

koden tolkas rad för rad av datorns processor, utförs direkt och glöms

bort sedan. Det uppstår ingen ny kod som lagras på hårddisken. Interpre-

tering av källkod är alltid långsammare än exekveringen av redan kompi-

lerad maskinkod. Däremot är interpretering snabbare än kompilering av

källkod. I Basic finns inget kompileringssteg. Basic är, som namnet be-

rättar, inriktat på att lära ut programmering för nybörjare. Därför har man

hållit språket så enkelt som möjligt, så enkelt att man struntat i kontroll-

strukturer som redan fanns i Algol och därmed lagt grunden för hopp-

satser. Basic utvecklades ursprungligen av Dartmouth College i USA,

men har sedan tagits över av Microsoft och integrerats som QuickBasic i

DOS och Windows. På 90-talet har Microsoft lanserat vidareutvecklingen

Visual Basic som blivit ett modernt och populärt utvecklingsverktyg. Den

nyaste versionen heter Visual Basic.NET och är objektorienterad. I Visual

Basic kan man även generera en exekverbar kod i efterhand genom att

kompilera källkoden.

1971 Pascal är ingen förkortning för något utan har uppkallats efter Blaise

Pascal som konstruerade räknemaskinen 1652. Pascal utvecklades av

Niklaus Wirth på ETH (Eidgenössische Technische Hochschule) i Zürich.

Tanken var att skapa ett kompilerande språk för att lära ut programmering

för nybörjare genom att kombinera Basics enkelhet med Algols logiska

strukturer och dess algoritmiska upplägg. På 80-talet utvecklade mjukva-

ruföretaget Borland Turbo-Pascal som blev en stor succé pga kompila-

torns snabbhet och den integrerade programutvecklingsmiljön (IDE) som

möjliggjorde kompilering, felsökning, editering och online hjälp i en och

samma miljö. Idag marknadsför Borland Pascals objektorienterade vida-

reutveckling Delphi.

Från procedural (C) till objektorienterad programmering (C++)

70- C++ är en direkt utvidgning och vidareutveckling av programmeringssprå-

80-talet ket C som 1972 utvecklades av Dennis Ritchie på Bell Laboratories med

syftet att skapa ett språk för programmering av operativsystemet Unix. I

den bemärkelsen är C en biprodukt av Unix. Därför finns många logiska

paralleller mellan C/C++ och Unix. Idag är inte bara Unix utan även andra

operativsystem inkl. Windows skrivna i C/C++. Styrkan i C består av en

kombination mellan enkelhet, strukturering och möjligheten att lätt kunna

kommunicera med datorns hårdvara. C har bland de moderna språken den

bästa förmågan att hantera och kontrollera hårdvaran, vilket favoriserar C

som programspråk t.ex. för operativsystem. Den stora frihet som C erbju-

der för hantering av bl.a. datorns primärminne med hjälp av pekare, kod

 9

som ger åtkomst till den fysiska adressen till data och på gott och ont tillå-

ter manipulationer av minnesadresser genom pekararitmetik.

 Det var dansken Bjarne Stroustrup som la grunden till vidareutvecklingen

av C. Under 70-talet hade man nämligen konstaterat att procedural pro-

grammering (Algol, Pascal, C, …) inte längre tillgodosåg alla krav som

stora komplexa program ställde med avseende på underhåll, förnyelse och

ändringsbarhet. Ingen kunde sätta sig in i, ändra och vidareutveckla ett

stort program om programmeraren hade lämnat företaget. Det innebar ett

enormt slöseri med resurser. Dessutom utvecklades hårdvaruteknologin så

snabbt att program som kunde köras på de allt mer avancerade datorerna

blev allt större och mer komplexa, speciellt när det gällde grafiska tillämp-

ningar. Mjukvaruteknologin utvecklades inte alls i samma takt. För att lö-

sa alla dessa problem uppkom den nya programmeringsfilosofin objekt-

orienterad programmering (OOP) som en vidareutveckling av den traditio-

nella procedurala programmeringen.

 1983 presenterade Bjarne Stroustrup programmeringsspråket C++. Han bi-

behöll hela C och la till de nya objektorienterade elementen, bl.a. klassbe-

greppet, som hade redan funnits t.ex. i Simula, ett norskt programmerings-

språk från 1967 som i sin tur var en direkt utbyggnad av Algol (Algorith-

mic language). Simulas klasser hade ”glömts bort”. Den ovan beskrivna

problematiken på 70-talet gjorde att man kom ihåg dem. Förhållandet mel-

lan C och C++ illustrerar bäst den ”nya” filosofin tilläggskaraktär:

 C är nämligen en delmängd av C++. Därför gäller all C-kod även i C++,

men inte tvärtom. Med andra ord, en C++ kompilator kan kompilera all

kod skriven i C, men inte tvärtom. Så den som lär sig C++ lär sig automa-

tiskt C. Delmängdrelationen mellan C och C++ är unik bland högnivåsprå-

ken.

 C++ är ett kraftfullt och populärt programmeringsspråk, vars styrka ligger

på textbaserade konsolapplikationer. Inte att C++ vore olämpligt för gra-

fiska tillämpningar, bara att det är lite jobbigt att skriva C++ kod för att

åstadkomma grafik. En anledning är att, när C++ skapades, hade grafiska

tillämpningar bara en begränsad spridning. Med utvecklingen av webben

och dess grafiska miljö, med spridningen av Windows och grafiska an-

vändargränssnitt blev grafiken dominant. Idag har C++ fått en renässans

med uppkomsten av IoT pga sin snabbhet och maskinnära egenskap.

C++

C

 10

90-talet Javas uppkomst motiverades av en annan utveckling inom IT som man

skulle kunna kalla den grafiska eller Webbrevolutionen. Urspungligen har

Java utvecklats av Sun Microsystems som ett projekt för att skapa ett

språk för programmering av hushållsmaskiner. Men detta projekt visade

sig vara en bubbla som sprack som mycket annat inom IT. Webben, som

revolutionerade IT, blev räddaren i nöden för Java. Men Java är inte bara

grafik och webb. Sun satsade på att utveckla Java till ett universellt ob-

jektorienterat språk som var plattformsoberoende. Idag används Java bl.a.

för webbapplikationer, t.ex. Java Server Pages (JSP).

 Sedan Sun Microsystems köpts upp av Oracle, är Java en Oracle-produkt.

Oracle är en av världens ledande utvecklare av databashanterare. Java står

inte i fokus av deras affärsverksamhet. Senaste tiden har Java tappat på

popularitet inte minst pga sin lite krångliga kod jämfört med nyare ut-

vecklingar som Python och C#.

90-talet Python skapades år 1989 av Guido van Rossum, en forskare på Natio-

nal Research Institute for Mathematics and Computer Science i Am-

sterdam och är en av de ovannämnda nyare utvecklingarna. Språket är

interpreterande – liknande goda gamla BASIC – dessutom universellt.

Python kan enkelt och gratis installeras på alla plattformar utan att man

behöver bry sig om licenser. Koden är nästan självbeskrivande, ligger

nära pseudokod och återspeglar algoritmen. I vissa avseenden är Python

t.o.m. revolutionerande. Med små tekniska detaljer har man underlättat

kodningen avsevärt. T.ex. har man avskaffat de obligatoriska symbo-

lerna { } för ett block. Det är inte längre nödvändigt att avsluta en sats

med semikolon. De logiska indragningar som gör koden läsligare, har

man lyft till obligatorisk syntax. Man är tvungen att följa god program-

meringsstil. Variabler behöver inte explicit deklareras. Löpande kod

och funktioner behöver inte nödvändigtvis skrivas i klasser. Språkets in-

terpreterande karaktär gör det möjligt att på ett lekfullt sätt experimen-

tera med kod. Pga dessa fördelar och sin enkla, smdidiga och kloka

kodningsteknik har Python mer eller mindre konkurrerat bort Java och

kan idag anses som världens mest populära programmeringsspråk åt-

minstone inom utbildning.

2000 C# har sina rötter i programspråken C, C++ och Java och är därmed

byggt på det gamla, beprövade och välkända. Den allra första versionen

av C# släpptes år 2000 av Microsoft. Man tog över allt som var bra och

skrotade allt som var lite krångligt hos de andra språken. Men den vikti-

gaste förnyelsen var att det nya språket integrerades i Microsofts .NET-

miljö för att göra det utbytbart mot de andra språken inom .NET. En stor

del av världens mjukvara utvecklas idag i C#.

 11

1.2 Olika paradigm inom programmering

Vad är ett paradigm? T.ex. fri marknadsekonomi är ett paradigm inom ekonomi,

statligt styrd ekonomi ett annat. I programmering är att koda på ett sätt som kan

återanvändas även i andra program ett paradigm, att inte göra så ett annat. Gene-

rellt kan man säga:

Ett paradigm är en samling av regler, rekommendationer,

normer, konventioner, mönster, standards, metoder och te-

orier inom ett ämne, som delas och följs av de flesta inom

ämnet under en viss tidsperiod.

Ett paradigm ger en orientering som styr handlingen och föreligger därför före er-

farenheten (a priori), likt en fördom. Efter erfarenheten jämförs och bedöms hand-

lingen med paradigmet (a posteriori), likt en lärdom.

Överensstämmer resultatet efteråt inte med paradigmet, kan paradigmet åtminstone

delvis ifrågasättas. Ofta leder ämnets progression efter längre tidsperioder till byten

av paradigm, s.k. paradigmskiften, förutsatt att ett nytt paradigm har ställts upp

som bättre uppfyller de önskade kraven. I programmeringens historia är vi vittnen

för många sådana paradigmskiften, se Paradigmskifte (sid 14).

Maskinorienterad programmering

Även kallad maskinnära programmering, vilket innebär att man skriver instruk-

tioner som enkelt och snabbt, ja nästan direkt kan utföras av datorns processor

(CPU). Maskinorienterade programmeringsspråk ligger allra närmast hårdvaran.

Ursprungligen kan sådana maskinorienterade instruktioner endast utföras på en

konkret maskin, eftersom de är definierade just för den aktuella hårdvaran. Ett ty-

piskt exempel för ett sådant språk är Assembler som fortfarande är läsbar källkod

som omvandlas till maskinkodens ettor och nollor av ett speciellt program som he-

ter assemblator. Själva översättningsprocessen kallas för assemblering. Fördelen

med maskinnära språk är den enkla och därmed snabba åtkomsten till hårdvaran,

vilket kan vara avgörande i vissa sammanhang, t.ex. för spelkonsoler. Nackdelen är

den svårt läsbara och icke-portabla koden.

Deklarativ programmering

Innebär att man anger vad som ska göras, inte hur det ska gå till. Man nöjer sig

med att säga vad man vill ha. Tillvägagångssättet tas hand om av programmerings-

språket. Ett typiskt exempel för ett sådant språk är SQL som står för Structured

Query Language och är standardspråket för kommunikation med databaser. Med

en SQL-sats ställer man en fråga till en databas. Man får som svar den datamängd

som är efterfrågad i SQL-satsen. Hur SQL letar efter och hittar denna datamängd i

den väldigt komplexa databasen, behöver programmeraren inte bry sig om. Man

deklarerar endast sitt önskemål, precis som man beställer en maträtt på en retau-

rang. Deklarativ programmering har många underkategorier.

 12

Funktionell programmering

En typ av deklarativ programmering är funktionell programmering. I detta para-

digm består ett program av en samling matematiska funktioner som definieras och

exekveras direkt med minsta möjliga tidsåtgång (runtime). Man undviker kod som

anses vara onödig overhead och fokuserar på effektivitet och funktionalitet hos de

mest små moduler utan att behöva ange i vilken ordning de ska exekveras. Ett ty-

piskt funktionellt språk – dessutom det äldsta – är Lisp. I Visual Studio finns även

ett funktionellt språk som heter F#. Historiskt har funktionell programmering sitt

ursprung i ett matematiskt forskningsprojekt på 30-talet som resulterade i den s.k.

Lambdakalkylen. I C# har man integrerat dessa tankar i språket (Lambdauttryck).

Logikprogrammering

En annan typ av deklarativ programmering är logikprogrammering som baseras på

matematisk logik. Ett logikprogram består i första hand av ett antal axiomer som

kan anses vara en bas av definitioner och regler som alla följande instruktioner

måste följa. All kod som skrivs kommer att exekveras endast enligt dessa axiomer.

Man ställer en fråga och får svaret som en logisk slutsats ur axiomsystemet. Logik-

programmering har sitt ursprung i 70-talets forskningsaktiviteter kring artificiell

intelligens. Det mest kända logikprogrammet är Prolog.

Händelsestyrd programmering

Detta paradigm är typiskt för grafiska applikationer (GUI). Programkörningen är in-

te längre till 100% förbestämd av utvecklarens kod utan kan även styras – åtmin-

stone delvis – av användaren under programkörningen genom musklickningar och

tangenttryckningar, s.k. händelser. Även andra typer av händelser är tänkbara som

påverkar både programförloppet och avslutningen i en mycket större utsträckning

än det är fallet med rent textbaserade program. Exekveringen startar ofta i ett fön-

ster med grafiska komponenter, som visas när programmet körs. Efter en händelse

återgår kontrollen till operativsystemet, vilket dock inte betyder att körningen är

avslutad, utan att programmet är redo att ta emot nästa händelse osv. Händelsestyrd

programmering används bl.a. i Windowsprogrammering och är implementerad

t.ex. i C# Windows Forms Applications med sin stora verktygslåda av förprogram-

merade grafiska komponenter, s.k. Controls.

Spaghettiprogrammering

Självklart finns det inte ett uttalat paradigm som heter så. Det är snarare en ironisk

beteckning, ett smeknamn som man ur ett kritiskt perspektiv gett denna typ av

programmeringsvana som man i brist på bättre lösningar använt i de äldre språken.

Så länge det inte fanns kontrollstrukturer använde man sig av s.k. hoppsatser för

att åstadkomma loopar. Det reserverade ordet goto skickar programflödet till ett

annat ställe i koden vilket man markerar med en Label, t.ex. med L. En label är

ingen variabel utan en symbol som endast markerar ett ställe i koden. Den används

i goto-satsen för att skicka programflödet till det markerade stället. Ironiskt nog

finns det reserverade ordet goto fortfarande i C#. T.e.x. kan det se ut så här:

 13

L: Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");

 guessedNo = int.Parse(Console.ReadLine());

...
 if (guessedNo != 17) goto L;

Om det gissade talet inte är 17 dvs om användaren gissat fel, ska programmet hop-

pa till L där användaren ges åter möjligheten att göra en ny gissning som sedan

prövas, osv. Om däremot det gissade talet är 17, dvs om användaren gissat rätt,

äger hoppet inte rum. Man har med en if-sats, som är en enkel selektion, i kombi-

nation med goto lyckats konstruera en loop.

Varför kallar vi detta för spaghettiprogrammering när koden ovan fungerar? An-

ledningen är att hoppsatser leder i större program till förvirring. Föreställ dig att

man har ett stort program, använder väldigt många goto-satser och utnyttjar fullt

ut friheten att placera labels var som helst. Resultatet blir en kod som är svårt att

kontrollera, uppdatera och underhålla. Programflödet liknar till sist en spaghettirätt.

Sådana program uppfyller inte längre kraven om läslighet, förståelighet och än-

dringsbarhet. Det märks speciellt när en programmerare byter jobb och en efter-

trädare ska vidareutveckla programvaran. Ofta blir det helt omöjligt för efterträda-

ren att sätta sig in i koden. Redan på 60-talet ledde detta till en programvarukris

och initierade utvecklingen av procedurala programmeringsspråk som Algol, Si-

mula, Pascal, C, … där goto-satser kan och bör undvikas. Procedural programme-

ring bannlyser användningen av goto-satser då en okontrollerad användning av

hoppsatser i större program leder till spaghettiprogram som inte längre är läsliga,

förståeliga och ändringsbara. Procedural programmering ersätter alla hoppsatser

med kontrollstrukturer där det inte längre finns några labels då dessa är hårdkodade

och placerade på fasta platser. Man borde ersätta goto-satsen med en kontroll-

struktur av typ repetition, t.ex. en while-sats.

Procedural programmering

Motsatsen till deklarativ programmering är imperativ programmering. Procedural

programmering är den äldsta typen av imperativ programmering. Här anger man

inte bara vad som ska göras, utan även – och framför allt – hur det ska gå till.

Tillvägagångssättet är en väsentlig del av imperativa språk. Ett tillvägagångssätt

som exakt och entydigt beskriver hur man löser ett problem, kallas för algoritm.

Man kan beskriva en algoritm på många olika sätt, t.ex. på vanligt språk, med hjälp

av grafik, med pseudokod, i form av ett flödesschema osv. Väljer man programkod

för att beskriva algoritmen, har man ett datorprogram. Ofta måste även viss data

(t.ex. indata) läggas till för att lösa problemet. Därför ställde upp Niklaus Wirth,

skaparen av programspråket Pascal, på 60-talet följande definition:

Program = algoritm + data

Data är information i organiserad, strukturerad form. Men vad exakt är en algoritm,

och framför allt hur kan algoritmer beskrivas? Dessa frågor kommer vi att ägna oss

 14

åt i resten av det här kapitlet. Wirths definition återspeglar en algoritmorienterad

syn på programmering som även kallas procedural programmering. Procedur är ett

annat ord för algoritm. Modern till alla procedurala språk är Algol.

Objektorienterad programmering (OOP)

Om man i Wirths definition Program = algoritm + data lägger betoningen på data

istället för på algoritmen och inte längre betraktar data som ett slags bihang till

algoritmen utan som objekt kommer man till objektorienterad programmering.

Den nya definition som kom upp på 80-talet och återspeglar den objektorienterade

synen på programmering är:

Program = Modell av verkligheten

OOP syftar åt att efterlikna verkligheten. Man vill avbilda den reala världen – åtmin-

stone den del som tillåter datorisering – och konstruera en modell av den i sina dator-

program för att kunna simulera verkligheten genom att testa modellen. För att und-

vika filosofiska diskussioner kan vi anta att den reala världen består kort sagt av ob-

jekt. Världen kring oss är full med objekt: Människor, byggnader, bilar, tåg, flyg-

plan, träd, möbler, böcker, butiker, skolor, bibliotek, kontor, anställda, kunder, varor,

fakturor, order, bokningar, kurser osv. Objekten kan vara verkliga eller virtuella. Ett

datorprogram försöker att beskriva dessa objekt. Beskrivningen kodas i klasser.

Ett objekt kan i regel utföra vissa aktioner eller operationer. I den objektorienterade

programmeringens terminologi kallas de för metoder – samma som i den procedurala

programmeringen heter funktioner. En metod är en funktion som definieras i en

klass. Namnbytet beror på att man i OOP måste definiera sina funktioner i klasser,

därför att metoderna i regel ska vara bundna till objekt. Förenklat kan man säga: när

ett objektorienterat program körs anropar metoder varandra och skickar därvid objekt

till varandra. På så sätt simuleras verkligheten.

Paradigmskifte

Det som i programmeringshistorien gjorde att man behövde objektorienterad pro-

grammering var den växande komplexiteten hos program under 70-talet. Program-

mens storlek var avgörande för den växande komplexiteten. Man insåg att det inte

längre räckte till att skriva och testa program som fungerade just då. Det var

nödvändigt att med rimliga kostnader kunna även underhålla stora program, förnya

och vidareutveckla dem så att de fungerade även i flera år och att de framför allt

kunde anpassas till nyuppkomna situationer utan oöverkomliga svårigheter. Det i

sin tur krävde att man redan i designstadiet behövde ett annorlunda upplägg. Foku-

set förskjöts från problemlösning till modellering av verkligheten. Objektorienterad

design kom in i bilden. Allt detta var endast med procedural programmering inte

längre möjligt. Ett s.k. paradigmskifte hade blivit nödvändigt, dvs en ändring av

helhetssynen på programmering.

 15

1.3 Algoritmer och deras beskrivning

Många tror att algoritmer endast har med matematik att göra. Även om algoritmer

historiskt har introducerats av matematiker kan de användas på all problemlösning.

Man kan t.o.m. tillämpa algoritmer på vardagliga problem. Samtidigt ligger de till

grund för all programmering. Ett datorprogram är ingenting annat än en algoritm

beskriven i datorns språk. Men även följande vägbeskrivning är ett fullgott exem-

pel på en algoritm:

” … gå ut från ditt hus till vänster, fortsätt rakt fram,

sväng till höger vid trafikljuset, fortsätt sedan andra

korsningen till vänster, där finns ett gult hus, på 2:a vå-

ningen bor jag ...”

En algoritm är alltså ett tillvägagångssätt att lösa ett problem – vilket som helst.

Och det behöver inte heller vara datorn som löser det. Vi kommer att precisera

denna definition lite senare (sid 17). Problemet som ska lösas kan sakna lösning –

då kan det inte heller finnas någon algoritm. Om däremot problemet är lösbart, kan

det ha ingen, en eller flera algoritmer. Vi sysslar här endast med sådana problem

som har minst en algoritm.

Historiens första algoritm

Det är alltid lärorikt att blicka tillbaka till historien. Själva ordet algoritm härstam-

mar från ett namn på en person: namnet på den framstående persiska matematikern

Al-Kharazmi. Namnet har sedan latiniserats och blivit algoritm. Han levde på 800-

talet. I sin berömda bok om Algebra ställde han upp historiens första algoritm som

beskriver addition och multiplikation av heltal. Den används även idag. Men kunde

man inte addera eller multiplicera heltal på 800-talet? Jo, redan långt tidigare kunde

man räkna med tal i Egypten, Indien, Persien och Grekland. Vad var i så fall Al-

Kharazmis historiska prestation? Ja, det var inte att komma på hur man adderar

eller multiplicerar heltal – för det var ju redan känt, utan hur man i allmänna orda-

lag beskriver tillvägagångssättet, dvs formulerar en algoritm för dessa operationer.

1000 år mellan praktisk lösning och formell beskrivning

Det är anmärkningsvärt att beskrivningen av hur man räknar med heltal kom till

mer än 1000 år efter den praktiska lösningen. Orsaken är att den korrekta, allmänna

beskrivningen som ska hålla i alla tänkbara situationer, är mycket svårare att åstad-

komma än den faktiska lösningen av ett eller en klass av problem. Att själv gå en

väg som man känner till är enklare än att formulera en korrekt vägbeskrivning som

alla förstår och kan följa. Anledningen är att algoritmer är generella till sin natur,

och just det är tjusningen: Att försöka beskriva dem så att de håller i alla situatio-

ner, det är konsten. Detta gäller även idag: Program – det moderna sättet att beskri-

 Så uttalas hans namn på persiska idag (utan prefixet Al- som är arabiska). Han är född i

Kharazm, en antik region som fanns i nuvarande nordöstra delen av Iran (Khorasan) mot

Turkmenistan och Uzbekistan. På den tiden var Iran ockuperat av araberna.

 16

va algoritmer – måste fungera under alla omständigheter och ska helst aldrig kra-

scha. Dessvärre vet vi ju att så inte är fallet. En av utmaningarna inom program-

mering ligger just i att skriva program som fungerar i alla situationer. Det vi kan

lära oss av det 1000-åriga glappet mellan praktisk lösning och formell beskrivning

är: Satsa tid och energi på att först analysera det problem du vill lösa med ett pro-

gram. Fokusera på att beskriva lösningen av problemet så generellt som möjligt.

Exempel på algoritmer

I vardagen använder vi algoritmer hela tiden, om än omedvetet. Här några exem-

pel:

 Matrecept vars användning kan jämföras med programkörning på datorn:

 Råvaror (indata) Maträtt (utdata)

 Matrecept (algoritm/program)

Matrecept skrivs fortfarande med vanligt språk men man kan konstatera att det

finns en viss stil som är typisk för alla matrecept.

 IKEA:s monteringsanvisningar för att sätta ihop delarna till en möbel. Här

används en kombination av text och grafik som är mycket effektiv. Grafiken

förenklar algoritmen avsevärt. ”En bild säger mer än tusen ord.” På köpet får

man en slags internationalisering, ett oberoende av det lokala språket, vilket

gör att algoritmen förstås över hela världen.

 Bruksanvisningar av alla slag är exempel på algoritmer, även om många av

dem i praktiken är värdelösa. Men det finns dåliga algoritmer på andra områ-

den också.

 Manualer för datorprogram som visar hur ett program ska användas.

 Konstruktionsritningar som ingenjörer gör för att en viss produkt ska kunna

tillverkas i fabrik. En arkitektritning av ett hus är ett specialfall av det. Här har

grafiken tagit över helt och hållet.

 Partiturer: Noter i musik som används för att spela ett musikstycke och som

omfattar noggranna anvisningar om hur en hel orkester ska spela. Ett speciellt

”språk” används som varken består av text eller grafik, utan snarare av sym-

boler längs en tidslinje.

 Spelregler är snarare ett negativt exempel: De talar mest om vad man inte får

göra och lämnar ett stort utrymme för hur man får spela inom reglernas ram.

Därför finns två skilda problemställningar. Den ena är: ”Hur får jag spela?”

Kök

(dator)

 17

Spelregler ger delvis (negativa) svar på det. En helt annan problemställning är:

”Hur vinner jag spelet?” Spelteori som involverar sannolikhetslära behandlar

denna fråga. I spelteori brukar man tala om strategier snarare än algoritmer.

Här befinner vi oss i ett gränsområde där problem inte alltid har en entydig

lösning eller saknar algoritm. I fortsättningen kommer vi att undvika sådana

frågeställningar. Vi betraktar endast problem som är lösbara och har minst en

algoritm. Exemplet belyser dock en viktig aspekt: Inte bara vägen till lösning

måste beskrivas. Först måste problemställningen vara klart och exakt formule-

rad så att man kan avgöra om det finns en entydig lösning och minst en algo-

ritm.

Definition av algoritm

Låt oss titta på vad som är gemensamt för exemplen ovan (utom spelreglerna), för

att kunna fornulera en generell definition. Vilka typiska faktorer förekommer i alla

exempel?

För det första består de alla av en rad anvisningar om vad som ska göras för att lösa

det givna problemet. Frågan är: Ska man tillåta alla slags anvisningar? Om de leder

till problemets lösning, varför inte? Men leder alla slags anvisningar till lösningen?

T.ex. anvisningen ”Bygg ett hus!” är helt värdelös. Ingen av oss kan bygga ett hus

med bara denna anvisning. Problemet är ju just hur man bygger huset. Anvisnin-

garna måste vara mycket enklare och mer detaljerade. Vem som helst ska kunna ut-

föra dem. Sådana anvisningar kallas elementära instruktioner. Bara sådana kan

tillåtas i en algoritm om de ska leda till problemets lösning.

För det andra. Undersöker man de ovannämnda exemplens innehåll kan man kon-

statera att anvisningarna måste utföras i en viss ordning. Det går inte att kasta om

ordningen. Man inser redan vid receptexemplet att man först måste knåda degen

och sedan ställa in den i ugnen, inte vice versa. Vid partiturexemplet är ju ordnin-

gen helt avgörande. Och så är det i alla algoritmer. Ordningsföljden för de elemen-

tära instruktionerna måste finnas med i algoritmen. Självklart måste en algoritm

också ange när instruktionerna ska upphöra. Om vi sammanfattar kan vi formulera

följande definition:

 En algoritm är en följd av precisa anvisningar, s.k. elementära in-

struktioner, som löser ett givet problem, inklusive anvisningar om i

vilken ordning instruktionerna ska utföras och när de ska avslutas.

Dvs en algoritm måste ha ett exakt avslutningskriterium.

Av stor betydelse, speciellt för datoriseringen, är att algoritmen måste vara tolk-

ningsbar på ett enda sätt. Det får inte finnas tvetydigheter i formuleringen. Datorn

kan ju bara tolka våra anvisningar på ett enda sätt. Svårigheten ligger alltså i algo-

ritmens beskrivning, vilket är en god illustration till det 1000-åriga glappet mellan

praktisk lösning och formell beskrivning som nämndes på sid 15. Det är i regel svå-

rare att beskriva en algoritm än att lösa ett specifikt problem i en specifik situation.

 18

Anledningen är att algoritmer måste vara generella till sin natur: De måste hålla i

alla situationer. Följande dilemma uppstår:

Hur beskriver man en algoritm bäst, så att den kan tolkas endast på ett sätt, men

samtidigt behålla sin generella karaktär? Vi ska nu diskutera några hjälpmedel som

kan användas för att formulera sådana algoritmer:

Olika sätt att beskriva algoritmer

 Vanligt språk är ett sätt att beskriva algoritmer, t.ex. vägbeskrivningen till en

kompis. Största fördelen med det är att alla som kan språket direkt förstår

algoritmen utan att behöva lära sig något nytt. Nackdelen är att det ofta kan

tolkas på olika sätt. Och tur är det! Annars skulle man ju t.ex. inte kunna skri-

va en dikt eller njuta av den. Men just i samband med algoritmer då man efter-

strävar entydighet, är möjligheten till olika tolkningar en nackdel.

 Pseudokod är en hybrid (blandning) mellan vanligt språk och formaliserad

kod, ett försök att minska det vanliga språkets tvetydighet genom att införa

vissa strukturer och t.o.m. grafiska stilmedel i layouten. Allt som på ett enty-

digt sätt beskriver en algoritm, även en matematisk formel, kan användas som

pseudokod. I nästa avsnitt tar vi upp ett exempel på pseudokod med vanligt

språk kombinerad med generella kontrollstrukturer (sid 22) som förekommer i

alla algoritmer. På så sätt uppnår det vanliga språket en högre grad av entydig-

het, noggrannhet och struktur.

 Flödesschema eller flödesschema är en variant av IKEA:s monteringsanvisnin-

gar som kombinerar text och grafik med en klar dominans mot det senare.

Man använder sig av geometriska figurer som symboliserar algoritmens bygg-

stenar och av pilar som visar flödet i algoritmen och definierar instruktioner-

nas ordning. Med dessa få stilmedel uppnår man en hög noggrannhet i beskriv-

ningen, eliminerar tvetydigheter och åskådliggör algoritmens logiska struktur.

Det tänkta händelseförloppet syns tydligt. I det avseendet är flödesschema

överlägset både vanligt språk och pseudokod. Flödesschemassymbolik är ett

utmärkt medel som lämpar sig inte bara för beskrivning av fullständiga algorit-

mer, utan också för att åskådliggöra logiken hos mindre, men kritiska delar av

ett program. Vi kommer att använda oss av detta medel i hela boken.

 Programkod är den variant av algoritmbeskrivning som används för att låta

en dator utföra algoritmen. Därför måste den kunna tolkas av datorn. Program-

koden översätts till ett språk, kallat maskinkod som datorns processor förstår.

Programkoden däremot – även kallad källkod – är skriven i något programme-

ringsspråk som man måste lära sig. Medan källkod förstås av människan, men

inte av datorn, förstås maskinkod av datorn, men inte av människan.

 Andra sätt att beskriva algoritmer finns också. Inget av dem har lyckats etab-

lera sig som standard. Anledningen är att det är oförutsägbart vilka metoder

som i allmänhet kan lösa problem. Många av de traditionella sätten kan be-

tecknas med det samlande namnet pattern designs. Andra använder begrepp

 19

som strukturdiagram, Mind Maps eller beslutstabeller. Mest känt är dock UML

= Unified Modeling Language som är ett språk för objektorienterad design och

modellering. Man använder UML för att att planera, utveckla och visa struktu-

ren hos avancerade objektorienterade system. UML används för att lägga upp

och modellera stora programmeringsprojekt, vilket förutsätter bekantskap med

den objektorienterade programmeringens terminologi. Vi kommer att ta up

UML senare i avsnitt 4.9 (sid 93). I nästa avsnitt ska vi börja utveckla de tradi-

tionella struktureringsverktygen pseudokod och flödesschema.

 20

1.4 Traditionell design pattern med
flödesschema

Låt oss som exempel ta följande beskrivning på ren svenska av en vardaglig syssla:

”K. går upp kl. 6 och duschar tills kroppen känns fräsch.

Sedan torkar K. sig, tar på sig kläderna och äter frukost.

Vid frukosten lyssnar K. på radions trafikinformation.

Om det är mycket biltrafik, går K. ut, väntar tills ingen bil

kommer, går över gatan och tar bussen till jobbet. Annars

tar K. bilen till jobbet.”

Det är en beskrivning av en algoritm, låt oss kalla den för Morgonsyssla, som an-

vänder sig av det vanliga språket. Egentligen kan den knappast misstolkas när den

används med lite sunt förnuft. Ändå vill vi skriva om den, först som pseudokod och

sedan som flödesschema för att lära känna de nya begreppen. Som vi ska se kom-

mer detta att leda till en precisering av algoritmen.

Pseudokod till algoritmen Morgonsyssla

Gå upp kl. 6

Duscha TILLS kroppen känns fräsch

Torka och ta på dig kläderna

Ät frukost och lyssna på radio

OM det är mycket biltrafik

 gå ut

 vänta TILLS ingen bil kommer

 gå över gatan och ta bussen till jobbet
ANNARS

 ta bilen till jobbet

Låt oss analysera denna pseudokod lite närmare. Vad skiljer den från vanligt

språk? Vi har gett texten en ny form utan att ändra innehållet. Nya ”regler” för for-

men har införts: För det första finns det varken punkter eller kommatecken mellan

satserna. För att skilja dem åt, börjar istället varje sats på en ny rad. För det andra

innehåller varje sats endast en elementär instruktion. För det tredje är vissa rader

indragna vilket visar att instruktionerna på dessa rader, är underordnade andra in-

struktioner dvs är delar av dem. Så kan vi skilja mellan huvud- och underinstruk-

tioner. Algoritmen har 5 huvudinstruktioner:

I. Gå upp kl. 6

II. Duscha TILLS kroppen känns fräsch

III. Torka och ta på kläderna

IV. Ät frukost och lyssna på radio

V. OM ...
 ANNARS ...

 21

Att vi räknar OM-ANNARS-satsen som en instruktion, beror på att de hör ihop och

bildar ett par: ANNARS skulle förlora sin mening om det skiljdes från OM. Sedan har

algoritmen 4 underinstruktioner, 3 under OM och 1 under ANNARS. De är alla indrag-

na. Underinstruktionen ”gå ut” skulle kunna betecknas med V.a eftersom den till-

hör huvudinstruktion V. Undersinstruktionen ”vänta TILLS ingen bil kommer”

skulle i så fall få beteckningen V.b. Undersinstruktionen ”gå över gatan och ta bus-

sen till jobbet” blir V.c och ”ta bilen till jobbet” V.d. Hela algoritmen består av 5

huvud- och 4 underinstruktioner.

Villkor

Låt oss nu fördjupa analysen av pseudokoden och ta itu med de lite mer invecklade

instruktionerna, t.ex. med II:an:

 Duscha TILLS kroppen känns fräsch

Hur länge står K. under duschen? Innebörden av TILLS säger att detta avgörs av

hur länge kroppen känns ofräsch. Dvs K. frågar sig ständigt, självfallet omedvetet:

känns kroppen fräsch, ja eller nej? Om nej, fortsätt duscha! Om ja, sluta! Detta

händer kontinuerligt under duschandet. Hur många gånger, är inte bestämt, utan

avgörs av K.:s subjektiva svar på frågan. Menar K. att kroppen förblir ofräsch trots

duschandet, då ska K. enligt algoritmen fortsätta att duscha i all evighet – rent hy-

potetiskt! I pseudokoden formuleras känns kroppen fräsch däremot inte som fråga,

utan som ett villkor som ingår i TILLS-satsen, ett villkor för att fortsätta eller

avsluta duschandet. Villkoret testas gång på gång: är det sant, ska K. avsluta du-

schen. Är villkoret falskt, ska K. duscha vidare. Valet avgörs av villkorets s.k. san-

ningsvärde, dvs om det är sant eller falskt. Ett villkor kan antingen vara sant eller

falskt. På så sätt skiljer sig ett villkor från en instruktion. En instruktion utförs, me-

dan ett villkor testas. Testet avgörs av villkorets sanningsvärde. Därmed avgörs

även om den instruktion som knyts till villkoret, ska utföras eller ej.

Det finns flera villkor i pseudokoden, utmärkta i kursiv stil. Nästa villkor förekom-

mer i huvudinstruktion V:

OM det är mycket biltrafik
 ...

ANNARS ta bilen till jobbet

Den kursiva texten är ett villkor som avgör om K. ska gå över gatan och ta bussen

eller ta bilen till jobbet. Är villkoret sant (mycket trafik), då ska K. gå över gatan

och ta bussen. Är villkoret falskt (inte mycket trafik), ska K. ta bilen till jobbet.

Men till skillnad från TILLS-satsen testas villkoret här endast en gång, beroende på

den annorlunda logiska innebörden av OM.

Ett tredje villkor finns i underinstruktionen V.b:

vänta TILLS ingen bil kommer

 22

Instruktion 1

Villkor

Logiken avgörs igen av TILLS dvs K. ska vänta så länge det kommer någon bil.

När det inte längre kommer någon bil, ska K. sluta vänta. K. ställer sig gång på

gång frågan: kommer någon bil, ja eller nej? Om ja, fortsätt vänta! Om nej, sluta

vänta! Kommer det bilar hela tiden, då ska K. enligt algoritmen vänta i all evighet!

Kontrollstrukturer i algoritmer

Har vi därmed kartlagt pseudokoden till algoritmen Morgonsyssla? Nästan! Vi har

identifierat instruktioner (normal stil) och villkor (kursiv stil). Vi nämnde även or-

den TILLS och OM-ANNARS (fet, versal stil), men vi har ännu inte identifierat dessa

ord. De är ju varken instruktioner eller villkor, så vad är de? Låt oss för ett ögon-

blick glömma algoritmen Morgonsyssla och tänka oss en helt annan algoritm som

ska lösa ett helt annat problem. Vilka ord skulle även förekomma i den nya algorit-

men? Säkert ingen K.*, inget jobb, ingen dusch, ingen bil, ingen Men just det!

Orden TILLS och OM-ANNARS kan finnas i den nya algoritmen också. Och de kan

förekomma inte bara i denna algoritm utan i alla algoritmer. De är nyckelord och

fungerar som algoritmens byggstenar. I programmering kallas de för kontrollstruk-

turer eftersom de är generella strukturer som styr och kontrollerar hela algoritmen.

Ja, alla algoritmer är uppbyggda av dessa kontrollstrukturer. Behärskar man dem,

har man tagit ett stort steg mot förståelse av algoritmer och därmed förståelse för

programmering. Det finns tre grundläggande kontrollstrukturer i alla procedurala

programmeringsspråk:


 Sekvens (följd)

 Selektion (val)

 Repetition (upprepning, loop)

 För att rita flödesschema används följande symboler:

Algoritmens start och slut ritas med en oval.

En instruktion ritas som rektangel. Ett villkor ritas som romb.

Villkoret skrivs in i romben och kan även formuleras som fråga.

Ordningen i algoritmen (flödet) visas med pilar.

Det finns fler symboler än de som använts i flödesschemat till algoritmen Morgon-

syssla som ska vara en exakt översättning av den algoritm som vi ursprungligen for-

mulerade först på vanligt språk och sedan som pseudokod. Precis som vi gav texten i

vanligt språk en ny form utan att ändra innehållet när vi skrev om den till pseudokod,

ska även vid översättning till flödesschema ytterligare en ny form ges till algoritmen

utan att ändra innehållet, framför allt inte den logiska innebörden. Flödesschemats

fördel kan beskrivas med ordspråket En bild säger mer än tusen ord. Nu ska vi rita

algoritmen Morgonsysslas flödesschema.

* Precis som i litterära verk protagonisten kan vara vem som helst (t.ex. Kafkas romanfigur

”Herr K.”) kan även algoritmens K. stå för vem som helst. I pseudokoden och även i flödes-

schemat på nästa sida förekommer inte ens K., vilket visar att det inte handlar om personen

utan om problemet ”Att ta sig till jobbet”. Vi har att göra med problemlösning (procedural),

inte med modellering av verkligheten (objektorientering).

Start/Slut

 23

ja

Start

Gå upp kl. 6

Torka och ta på sig kläderna

Kroppen

fräsch?

Duscha

Äta frukost & lyssna på radio

nej
Mycket

biltrafik?
Ta bilen Gå ut

Kommer

någon bil?

Vänta

Gå över gatan & ta bussen

Slut

Loop*

Loop*

Flödesschema till algoritmen Morgonsyssla

 nej

 ja

 ja

 nej

 Loop = upprepningsslinga med inbyggt villkor som testas gång på gång.

 24

När vi säger att Morgonsyssla-algoritmens flödesschema ska bli en exakt översätt-

ning av den algoritm som vi ursprungligen formulerade på sid 20 menade vi förstås

den logiska likheten, inte den språkliga. T.ex. står i pseudokoden ”vänta TILLS in-

gen bil kommer” medan i flödesschemat står ”Kommer någon bil?” och flödessche-

mat svarar på denna fråga: ”om ja, vänta” vilket innebär ”vänta SÅ LÄNGE det kom-

mer någon bil”. Formuleringen är logiskt likvärdig med ”vänta TILLS ingen bil

kommer”. Hade vi formulerat frågan negativt ”Kommer ingen bil?” hade det lett till

dubbel negation vid svaret nej, vilket försvårar förståelsen. För att förenkla har frå-

gan i flödesschemat formulerats positivt. Undersök själv om det finns flera exempel

på språklig olikhet men logisk likhet mellan den ursprungliga texten och flödessche-

mat. Det är en utmärkt övning att kontrollera om vi på vägen från vanligt språk till

flödesschema verkligen inte ändrat algoritmens innehåll.

Om man jämför pseudokoden med flödesschemat till Morgonsyssla kan man kon-

statera att det är avsevärt enklare att få en snabb överblick över algoritmen när man

tittar på flödesschemat. Frågan uppstår varför man i så fall överhuvudtaget ska syssla

med pseudokod. Svaret är att det är programkod som vi slutligen ska skriva, och pro-

gramkod liknar pseudokod mer än flödesscheman. Vi kan inte mata datorn med gra-

fik som är huvudingrediensen i flödesscheman. Pseudokodens värde ligger i närheten

till programkod. Dessutom är den oberoende av programmeringsspråk. Flödessche-

ma däremot är ett utmärkt hjälpmedel som kan användas innan man skriver

programkod för att strukturera sina tankar om ett problems lösning som ska tas fram

med ett datorprogram. Även detta verktyg är helt oberoende av programmerings-

språk. Är problemet enkelt eller om en klar struktur för lösningen redan finns, be-

hövs ingen flödesplan. Växer problemets komplexitet rekommenderas en flödessche-

ma kombinerad med pseudokod.

 25

1.5 Tillägg av C# i Visual Studio

Här förutsätts att du redan installerat Visual Studio på din dator och använt denna

IDE för att köra andra programmeringsspråk. Nedan beskrivs hur du kan lägga till

språket C# till din befintliga miljö, utan att behöva av- eller ominstallera den tunga

programvaran i sin helhet.

1) Gå till dators Start-knapp och starta Visual Studio Installer.

2) Klicka på knappen Modify som befinner sig till höger om ikonen och texten

Visual Studio Community 2022.

3) Visual Studio Installer öppnar ett stort vitt fönster med den lilla rubriken

Modifying – Visual Studio Community 2022 … och den blå understrukna fliken

Workloads. I den finns ett antal rutor. Leta efter följande ruta (3:e till höger):

4) Markera rutan med

rubriken ..NET desktop

developmentt genom att

bocka den lilla blå rutan i

det övre högra hörnet.

5) Klicka sedan på Install i det nedre högra hörnet av det stora vita fönstret

Installing – Visual Studio Community 2022 … . Du kan själv välja bland alternativen

Install while downloading eller Download all, then install. Detta kan ta ett tag,

ev. ganska länge – beroende på din Internet-uppkoppling och din dators presta-

tion.

6) När du lyckats med installationen (Done installing) startas Visual Studio antin-

gen automatiskt eller du kan göra det själv från Start-knappen. Stäng rutan Vi-

sual Studio Installer. Följande eventualiteter kan dyka upp:

 Om du uppmanas att skapa ett Microsoft-konto (Sign in), gör det. Det är

gratis, går fort och är inte problematiskt. Anteckna ditt lösenord för senare

uppdateringar.

 Om du får upp en ruta med bl.a. dropplistan Development Settings välj

C#. Om alternativet inte finns låt General stå där. Klicka sedan på knap-

pen Start Visual Studiot.

7) Efter lyckad tilläggsinstallation av C# följ strikt de anvisningar du hittar i nästa

avsnitt 1.6 C# Console Applications. Små, men avörande detaljer skiljer sig från

de anvisningar du lärt dig tidigare. Det gäller speciellt typen av projekt direkt i

början, punkt 1. a) och filtypen lite senare, punkt 2. a). Skynda inte på utan var

noga i att strikt följa instruktionerna, även om mycket känns redan bekant. Bo-

kens alla program kommer att vara av typ C# Console Applications. Du kan

även här använda samma projekt för alla konsolapplikationer.

 26

1.6 C# Console Applications

Starta Visual Studio från Start-knappen: Start  Visual Studio 2022

Ett vitt fönster öppnas med rubriken Visual Studio 2022. I kolumnen till höger un-

der rubriken Get started finns ett antal rutor.

1. Att skapa eller öppna ett befintligt projekt: Beroende på om vi vill skapa

ett nytt eller öppna ett befintligt projekt, tar vi ett av följande alternativen a) el-

ler b):

a) Om vi vill skapa ett nytt projekt – och det vill vi nu – klickar vi i det vita

Visual Studio 2022-fönstret på rutan

 Create a new project

En ny dialogruta dyker upp med rubriken Create a new project. Scrolla

ned den högra kolumnen i dialogrutan Create a new project och leta efter

en ruta med rubriken Console App (.NET Framework) som ser ut så här:

OBS! Det kan vara lite svårt att hitta denna ruta, eftersom det finns många

alternativ och många rutor som ser likadana ut. Det är lättgjort att man

väljer fel ruta. Var extra noga med att du har C# ikonen och den exakta

rubriken:
Console App (.NET Framework)

Och inget annat! Annars kommer våra program inte kunna köras med de

instruktioner som ges i boken. Och då kommer hela installation av Visual

Studio att behöva göras om.

Markera rutan ovan. Klicka sedan på knappen Next.

En ny dialogruta dyker upp med rubriken Configure your new project.

Fyll i den uppgifterna enligt följande:

 27

Dvs i den övre delen av dialogrutan döper vi vårt projekt till MyCsCon-

soleProject. I textrutan Location anger vi den fullständiga sökvägen till

den mapp vi vill placera vårt projekt i. Låt oss säga vi vill samla våra C#

program i en mapp som vi kallar C# och placerar i enheten C:\ på vår

dator. I så fall anger vi som Location C:\C#. I denna mapp kommer nu

projektmappen MyCsConsoleProject placeras. Visual Studio skapar auto-

matiskt både den nya mappen och projektfilen. Bocka för den lilla rutan

Place solution and project in the same directory. Klicka på knappen Cre-

ate. Gå till punkt 2.

b) Om vi vill öppna ett redan befintligt projekt – det gör vi kanske senare –

klickar vi i det vita Visual Studio 2022-fönstret på rutan

 Open a project or solution

Vi får upp dialogrutan Open Project/Solution. För att öppna det projekt vi

vill jobba med, navigerar vi i datorns filsystem till projektmappen och

öppnar där filen med ändelsen .csproj. Gå till punkt 2.

2. Att lägga till en C#-källkodsfil till projektet: Efter att ha lämnat dialogru-

tan Configure your new project med Create-knappen enligt 1. a) eller dialog-

rutan Open Project/Solution med Open-knappen enligt 1. b) öppnas projektet.

Ett grafiskt gränssnitt kommer upp som liknar en webbsida bestående av en

massa menyer, flikar, länkar och fönster som ser ut så här:

 28

Man ser ett antal fönster: till höger ovan fönstret Solution Explorer där projek-

tets innehåll visas med ett antal automatiskt skapade filer, bl.a. filen Pro-

gram.cs som vi har markerat i bilden ovan. Till vänster ser man det stora kod-

fönstret som visar denna fils innehåll som är en mall för ett C# program. Den

är lämplig för dem som vill använda mallen för att snabbt kunna utveckla en

applikation. Vi däremot ska lära oss C# från grunden och vill inte använda kod

som vi inte skrivit själva. Därför: Markera Program.cs, högerklicka och välj:

Exclude From Project

Därmed har vi avlägsnat denna fil från projektet för att kunna infoga vårt eget

C# program i projektet. Det finns två alternativ att göra det: Antingen vill vi

skapa ett helt nytt program, skriva in koden, spara den i en fil och infoga den i

projektet eller vi vill lägga till en redan befintlig fil som innehåller ett C# pro-

gram, som vi kanske har skrivit tidigare. Vi ska behandla båda varianter och

börjar med den första:

a) Att skapa en ny fil och infoga det i projektet:

Markera i Solution Explorer projektnamnet MyCsConsoleProject, höger-

klicka på det och välj:
Add  New Item…

Dialogrutan Add New Item – MyCsConsoleProject dyker upp. Scrolla ner

fönstret i mitten tills du ser filtypen Code File. Markera Code File i mittfön-

stret:

 29

Ange i den undre delen av dialogrutan i textrutan Name: First.cs. Därmed

har du skapat en fil av typ Code File och döpt den till First.cs. Klicka på

Add-knappen. Så snart du gjort det läggs den tomma filen First.cs till projek-

tet. Samtidigt skapas denna fil i projektmappen MyCsConsoleProject. Och

när du i Solution Explorer markerar filen visas till vänster ett stort vitt fönster

som du kan använda som en editor för att skriva C#-kod i. Skriv in där t.ex.

följande kod:

using System;

class First

{
 static void Main()

 {
 Console.WriteLine("\n\tMitt första C# program!\n");

 }
}

Det rekommenderas att bibehålla kodens layout, för att följa God programme-

ringsstil. Visual Studio har stöd för detta. Koden kan sparas och lagras t.ex. i

filen First.cs så snart du kompilerar projektet, se punkt 3. Vi kommer att refe-

rera till den med programmet First som samtidigt är klassnamnet i koden,

vilket dock inte är obligatoriskt utan en konvention vi följer.

b) Att lägga till en befintlig fil till projektet:

Har du redan en C#-källkodsfil bland dina filer på hårddisken, markera i So-

lution Explorer projektnamnet MyCsConsoleProject, högerklicka och välj:

Add  Existing Item…

 30

 Dialogrutan Add Existing Item – MyCsConsoleProject dyker upp som tillåter

dig att navigera genom datorns filsystem för att ladda en existerande C#-

källkodsfil. Gå till den fil du vill ladda, markera den och klicka på knappen

Add i dialogrutan Add Existing Item – MyCsConsoleProject. I Solution Explo-

rer kan du konstatera att den fil du valde har kommit till projektet MyCs-

ConsoleProject. Markera den för att se innehållet i kodfönstret till vänster

som nu kan användas som en editor.

3. Att kompilera och exekvera: Nu när projektet är skapat och innehåller en

C#-källkodsfil kan man kompilera det vilket innebär att även källkoden ovan

kompileras. Om det inte redan finns ett Output-fönster längst ned på sidan un-

der kodfönstret, klicka i menyraden längst upp på menyn:

View  Output

Du får ett nytt Output-fönster för att kunna se resultatet av kompileringen och

även se eventuella kompileringsfel. Akta på vad som skrivs i det när du kom-

pilerar koden från menyraden längst upp med:

Build  Build Solution

 Om du får följande meddelande i Output-fönstret har kompileringen gått bra:

1>------ Build started: Project: MyCsConsoleProject, Configuration:
Debug Any CPU ------
1> MyCsConsoleProject ->
C:\C#\MyCsConsoleProject\bin\Debug\MyCsConsoleProject.exe
======== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped =======

 Meddelandet ovan, speciellt 0 failed, säger att koden inte innehåller några

kompileringsfel. Har du syntaxfel i koden kommer du att få felmeddelanden i

Output-fönstret. Åtgärda alltid endast det allra första kompileringsfelet och

kompilera om. Ett möjligt kompileringsfel kan vara att du glömt att exkludera

filen Program.cs från projektet, se sid 28.

 För att exekvera koden, klicka i menyraden längst upp på menyn:

Debug  Start Without Debugging

 Om allt har gått bra bör det se ut så här på din skärm:

 31

1.7 De enkla datatyperna i C#

bool representerar sanningsvärdena sant eller

falskt. char lagrar tecken. sbyte, byte,

short, ushort, int, uint, long, ulong är

enkla datatyper för representation av heltal.

Prefixet u som inleder några av dem betyder

unsigned och innebär att dessa endast kan

lagra positiva heltal, medan prefixet s står för

signed som tillåter även negativa heltal. De

enkla datatyperna float, double, decimal

representerar decimaltal. Alla enkla datatyper i

C# är reserverade ord. Där finns även det re-

serverade ordet sizeof som används för att

mäta minnesstorleken av varje datatyp i antal

bytes. 1 byte består av 8 bitar där 1 bit är den

minnesatom som kan lagra endast en nolla eller en etta. Som man ser har vi ordnat

de enkla datatyperna efter det minnesutrymme som är tilldelat och förbestämt i

deras definition. Det tillåtna värdeområdet ligger inom ett intervall som direkt kan

härledas från minnesstorleken som varje datatyp har till förfogande.

Egentligen är programmet PrimitivesCs ur programmeringsteknisk synpunkt

inte särskilt intressant och består av en enda utskriftssats. Vi återger den ändå, inte

minst för att visa hur man använder operatorn sizeof:

// PrimitivesCs.cs

// Visar alla enkla datatyper i C# och deras minnesstorlekar

// Operatorn sizeof mäter minnesstorleken i antal bytes

using System;

class PrimitivesCs

{
 static void Main()

 {
 Console.WriteLine("De enkla datatyperna i C#:\n" +

 "--------------------------\n" +

 "Datatypen bool tar " + sizeof(bool) + '\n' +

 " sbyte " + sizeof(sbyte) + '\n' +

 " byte " + sizeof(byte) + '\n' +

 " char " + sizeof(char) + '\n' +

 " short " + sizeof(short) + '\n' +

 " ushort " + sizeof(ushort) + '\n' +

 " int " + sizeof(int) + '\n' +

 " uint " + sizeof(uint) + '\n' +

 " long " + sizeof(long) + '\n' +

 " ulong " + sizeof(ulong) + '\n' +

 " float " + sizeof(float) + '\n' +

 32

 " double " + sizeof(double) + '\n' +

 " decimal " + sizeof(decimal) + " bytes\n");

 }
}

De enkla datatypernas gränser

De enkla datatypernas gränser som vi egentligen är ute efter i detta avsnitt, kan nu

lätt härledas från deras minnesstorlekar. Ett exempel är heltalsdatatypen short

som enligt ovan har 2 bytes dvs 2x8 = 16 bitar till förfogande. Därför reserverar

varje variabel definierad som short 16 bitar i minnesutrymme. Ett värde till en

sådan variabel kan alltså inte lagras i datorn om det överstiger det största binära tal

som kan lagras i 16 – 1 = 15 bitar. 15 därför att en bit behövs för att lagra själva tec-

knet + eller – därför att en short-variabel kan även anta negativa värden. Det stör-

sta binära heltal som kan lagras i 15 bitar består av 15 ettor dvs 111 1111 1111 1111.

I det decimala talsystemet blir det 32 767. Därför är den positiva gränsen för data-

typen short 32 767. På samma sätt kan de andra datatypernas gränser härledas från

deras resp. minnesutrymme. Ingen panik! Vi kommer inte att göra det. Dessa grän-

ser är lagrade i vissa namngivna konstanter. Här skrivs ut dem för alla enkla data-

typer som ett körresultat av programmet Limits på nästa sida:

Enkla datatypernas gränser:

sbyte finns mellan -128 och 127

byte 0 255

char 0 65535

short -32768 32767

ushort 0 65535

int -2147483648 2147483647

uint 0 4294967295

long -9223372036854775808 9223372036854775807

ulong 0 18446744073709551615

float -3,402823E+38 3,402823E+38

double -1,79769313486232E+308 1,79769313486232E+308

decimal -79228162514264337593543950335 och

 79228162514264337593543950335

bool tar endast värdena True och False

Till skillnad från de andra datatyper som kan anta både positiva och negativa vär-

den, kan de teckenlösa datatyperna (u = unsigned dvs utan tecken + eller -)

endast anta positiva värden: De heter så därför att deras värden varken behöver ha

plus- eller minustecknet framför talet. Dessa enkla datatyper har precis lika mycket

minnesutrymme till förfogande som sina motsvarande vanliga datatyper med tec-

ken. Detta innebär att nödvändigheten att lagra tecknet faller bort hos unsigned-

typerna. Om vi resonerar vidare i exemplet med short skulle datatypen ushort

ha alla 16 bitar till förfogande för själva positiva heltalet. Det största binära heltal

som kan lagras i 16 bitar består av 16 ettor dvs 1111 1111 1111 1111. I det decimala

talsystemet blir detta 65 535. Därför är gränsen för datatypen ushort dubbelt så

 33

stort (fast +1 pga nollan) som för short. Och så är det med alla unsigned-typer:

deras gränser är dubbelt så stora fast de har lika stort minnesutrymme till förfogan-

de, därför att de inte behöver lagra tecknet och därmed har 1 bit mer för att lagra

själva positiva heltalet. Av samma anledning har byte en dubbelt så stor övre

gräns som sbyte fast båda tar endast 1 byte minne. Decimaltalstyperna float och

double:s gränser visas i utskriften ovan i s.k. Exponentiellt format, även kallat

grundpotensform (eng.: Scientific notation) vilket innebär att t.ex. float:s positiva

gräns 3.4028235E38 är lika med 3,4028235 gånger 10 upphöjt till 38 dvs
38

3,4028235 10 .

// Limits.cs

// Visar enkla datatypernas gränser som är lagrade i

// konstanter definierade i datatypklasserna

using System;

class Limits

{
 static void Main()

 {
 Console.WriteLine("Enkla datatypernas gränser:\n" +

 "---------------------------\n" +

 "sbyte finns mellan " + sbyte.MinValue +

 " och " + sbyte.MaxValue +

 "\nbyte " + byte.MinValue +

 " " + byte.MaxValue +

 "\nchar " + (int) char.MinValue +

 " " + (int) har.MaxValue +

 "\nshort " + short.MinValue +

 " " + short.MaxValue +

 "\nushort " + ushort.MinValue +

 " " + ushort.MaxValue +

 "\nint " + int.MinValue +

 " " + int.MaxValue +

 "\nuint " + uint.MinValue +

 " " + uint.MaxValue +

 "\nlong " + long.MinValue +

 " " + long.MaxValue +

 "\nulong " + ulong.MinValue +

 " " + ulong.MaxValue +

 "\nfloat " + float.MinValue +

 " " + float.MaxValue +

 "\ndouble " + double.MinValue +

 " " + double.MaxValue +

 "\n\ndecimal\t " + decimal.MinValue +

 " och \n\t\t " + decimal.MaxValue +

 "\n\nbool tar endast värdena " + true +

 " och " + false + '\n');

 }
}

 34

1.8 Inläsning av data

Våra C# program har hittills bara haft utdata, inga indata. Det var utdata som

skrevs ut från programmet till bildskärmen, närmare bestämt med metoden Write-

Line() till konsolen. Men hur gör man när man vill skicka indata till ett program?

Följande program visar hur man kan göra det med metoden ReadLine():

/* InputCs.cs

 Programmet för en dialog med användaren, läser in text med

 ReadLine() som sedan skrivs ut. Inläsningen föregås av en

 ledtext för att instruera användaren. ReadLine() är en me-

 tod definierad i klassen Console och returnerar den inma-

 tade strängen som lagras i variabler av typ string.

*/

using System;

class InputCs

{
 static void Main()

 {
 string name, course; // Datatypen string

 Console.Write("\n\tVad heter du?\t\t"); // Ledtext

 name = Console.ReadLine(); // 1:a inläsning

 Console.Write("\n\tHej på dig, " + name + ',' +

 "\n\tvilken kurs läser du? ");

 course = Console.ReadLine(); // 2:a inläsning

 Console.WriteLine("\n\tVälkommen till " + course +

 "-kursen!\n");

 }
}

Programmet ovan producerar en dialog i två delar. Den första frågar efter name, lä-

ser in det och ger svar, efter att användaren matat in ett namn och tryckt på Enter.

Den andra delen gör samma sak med inläsning av course:

 Vad heter du? Peter

 Hej på dig, Peter,

 vilken kurs läser du? C#

 Välkommen till C#-kursen!

Data som matas in från tangentbordet eller läses in från filer, är indata. Till skillnad

från utdata som inte behöver mellanlagras, måste indata lagras i minnet. Både inda-

ta och programkod måste lagras i RAM-minnet. Programkoden laddas från hårddis-

ken till RAM-minnet när maskinkoden i den exekverbara filen körs. Indata däremot

måste matas in under programmkörning och mellanlagras i en minnescell i RAM-

 35

minnet innan den kan vidarebearbetas av programmet. Mjukvarumässigt innebär

detta att indata måste tas emot och lagras i en variabel – ytterligare ett skäl till att

variabeln måste vara definierad, dvs vara associerad med en minnescell av en viss

storlek som är reserverad i datorns RAM-minne. Variabelns namn blir en referens

till minnesadressen som sedan kan användas för att komma åt data. Medan alloke-

ringen av minnesutrymme i regel sker under kompilering via variabeldefinition,

måste inmatningen göras under exekveringen. Därför avbryts exekveringen när en

inmatning ska ske. I koden förorsakas detta temporära avbrott av anropet av meto-

den ReadLine() som vi ska nu förklara närmare.

Metoden ReadLine()

Vad metoden gör kan vi se när programmet InputCs exekveras: Första gången

anropas metoden i satsen

name = Console.ReadLine();

Anropet sker med punktnotation eftersom metoden ReadLine() är definierad i

klassen Console. Men varför bakas metodens anrop in i en tilldelningssats: name

= ...? Så är det inte med utskriftsmetoden WriteLine(). Dess anrop står fritt i

en självständig sats. Detta beror på att WriteLine() läser in data som måste lag-

ras för att vidarebearbetas. Denna lagring görs i en variabel, i exemplet ovan i

variabeln name som tar emot och lagrar den inmatade texten. Vi har i ReadLine()

för första gången att göra med en metod som returnerar ett värde, det s.k. retur-

värdet. ReadLine() är en metod med returvärde. Sådana metoder kan man jäm-

föra med en låda i vilken man stoppar in parametrar och får ut ett returvärde:

 Parametrar Returvärde

ReadLine() har ingen parameter och returnerar en sträng, nämligen den av an-

vändaren inmatade texten. Denna sträng hamnar i variabeln name när användaren

trycker på Enter. Därför står anropet i en tilldelningssats, just för att ta hand om

den returnerade strängen (returvärdet). Att en sträng dvs vanlig text kallas här för

returvärde är inte något anmärkningsvärt. All form av data betecknas som värde

som lagras i form av en sekvens av ettor och nollor i en minnescell.

För ett korrekt anrop av en fördefinierad metod är det dessutom avgörande att veta

vilka datatyper metodens parametrar och returvärde har. Dessa är nämligen också

fördefinierade och kan inte väljas fritt. Vi måste deklarera variabeln som lagrar re-

turvärdet med just den datatyp som metoden föreskriver för sitt returvärde. Faktum

är att returvärdet till ReadLine() är av datatypen string. Alltså, för att lagra re-

turvärdet i variabeln name och sedan course måste dessa variabler deklareras till

datatypen string.

Metod

 36

Metoden int.Parse()

Hade string-variabeln name i programmet InputCs varit t.ex. number och des-

sutom av datatypen int istället, hade vi behövt att läsa in den så här:

 int number;

 Console.Write("\n\tMata in ett heltal:\t"); // Ledtext

 number = int.Parse(Console.ReadLine()); // Inläsning

 // och omvandling till int

Vi vet ju att returtypen av metoden ReadLine() är string. För att kunna läsa in

även heltal måste vi omvandla returtypen till int. Just detta gör den fördefinierade

metoden int.Parse() åt oss. Den tar emot i sin parentes en parameter som är av

typ string, omvandlar den till heltal och returnerar den som en int.

Satsen number = int.Parse(...);

utför denna omvandling och lagrar resultatet i variabeln number som är deklarerad

som int. Även här är anropet av metoden int.Parse() inbakat i en tilldelnings-

sats för att ta hand om metodens returvärde. De tre punkterna ... är i sin tur retur-

värdet till metoden ReadLine() som är string. I själva verket står till höger om

tilldelningstecknet i satsen ovan ett s.k. nästlat anrop av de två metoderna Read-

Line() och int.Parse(). Observera att nästlade anrop av två (flera) metoder

sker alltid inifrån.

Villkorlig initiering

Även om man i C# har tagit över kontrollstrukturers syntax från C++ förekommer

små skillnader. En av dem är villkorlig initiering av variabler som inte får göras i

C#, men är tillåten i C++. Det handlar inte om kontrollstrukturers syntax utan om

behandlingen av variabler där C# har en striktare policy än C++ som syftar åt mer

stabilitet av koden. Variabler deklarerade till enkla datatyper i en metod – och detta

gäller förstås även för Main()-metoden – måste initieras innan (om) de används. I

C# får initieringen inte vara villkorlig dvs stå i en if-sats. Närmare bestämt får ini-

tieringen inte skrivas i kroppen till en if-sats vars villkor involverar variabler. Det-

ta gäller oavsett villkorets sanningsvärde. Även om villkoret är sant kan koden inte

kompileras om variabeln initieras i if-satsen och villkoret är formulerat med varia-

bler. I följande program står initieringen av variabeln letter i en if-sats och är

därmed beroende av if-satsens villkor i vilket variabeln i är involverad. Därför

kan koden inte kompileras fast villkoret i == 0 är pga i:s initiering sant:

 37

// CondInit.cs // Kan ej kompileras

// Ger kompileringsfel pga villkorlig initiering av variabeln

// tecken i if-satsen

using System;

class CondInit

{
 static void Main()

 {
 char letter;

 int i = 0;

 if (i == 0)
 letter = 'a'; // Villkorlig initiering

 Console.WriteLine(letter);

 }
}

Kompilatorn genererar felmeddelandet: Use of unassigned local variable 'letter'

Dvs C#-kompilatorn anser variabeln letter som icke-tilldelad. Samma felmedde-

lande får man om man missar att tilldela en variabel. Problemets lösning är att helt

och hållet koppla bort tilldelningen från villkoret och skriva den fristående:

// UncondInit.cs // Kan kompileras

using System;

class UncondInit

{
 static void Main()

 {
 char letter;

 int i = 0;

// if (i == 0)
 letter = 'a'; // Ovillkorlig initiering

 Console.WriteLine("\n " +

 "Nu när if är bortkommenterad är variabeln letter " +

 "initierad\ntill " letter + "\n utan villkor!\n");

 }
}

Istället för kompileringsfel får vi nu följande utskrift när vi kör:

 Nu när if är bortkommenterad är variabeln letter initierad

 till a

 utan villkor!

 38

I programmet UncondInit är initieringen av letter helt oberoende av något vill-

kor. Raden som inleder if och därmed hela if-satsen är bortkommenterad. Även

om initieringen av letter fortfarande står indragen, är den en fristående sats utan

villkor.

Anmärkningsvärt är att programmet CondInit skulle kunna kompileras om man

byter ut if-satsens huvud mot if (1 == 1) eller if (true) dvs om endast kon-

stanter är involverade i villkoret. Endast ’variabelt’ formulerade villkorliga ini-

tieringar sätter C#-kompilatorn stopp för. Därför måste regeln om villkorlig initie-

ring formuleras så här:

i == 1 är ett icke-konstant villkor, därför att dess sanningsvärde är beroende av va-

riabeln i:s värde.

Förbudet mot villkorlig initiering är inte begränsad till if-satser utan gäller även i

andra kontrollstrukturer där villkor är inblandade.

Villkorlig return-sats

Även i metoder med returvärde får metodens return-sats inte stå villkorligt, vare

sig villkoret tillhör en if-sats eller en loop. I sådana fall ger C# kompilatorn följan-

de felmeddelande:

”… not all code paths return a value.”

Dvs: Inte alla teoretiskt möjliga alternativ i koden returnerar ett värde. Och det går

inte eftersom din metods huvud är definierat med en returtyp int, char, float,

double, string, … istället för void. Du måste infoga return-satser i kodens

alla teoretiskt möjliga alternativ, även om det sker rent formellt. Observera att tom-

ma return-satser av typ return; inte är tillåtna i C# – till skillnad från C++.

Förbuden mot villkorliga if- och return-satser har införts i C# för att göra pro-

grammen mer stabila och tillförlitliga, så att de med en så liten arbetsinsats som

möjligt kan vidareutvecklas till senare versioner.

Variabler vars initiering är beroende av icke-konstanta villkor leder

i C# till kompileringsfel.

 39

1.9 Collatz algoritmen

Lothar Collatz (1910-1990) var professor för tillämpad matematik vid Hamburgs

Universitet på 60-talet. Som ung student ställde han upp följande uppgift:

”Tänk dig ett positivt heltal (startvärde). Är talet udda

multiplicera det med 3 och addera 1. Är talet jämnt

dividera det med 2. Gör samma sak med resultatet.

Fortsätt tills du fått 1.”

Det visar sig att talföljderna i denna algoritm, även känd som Collatz-förmodan el-

ler (3n+1)-problemet, alltid slutar med 1 oavsett startvärde. Dock är detta påstående

matematiskt hittills obevisat 
. Så här ser flödesschemat ut för denna algoritm:

Flödesschemat till Collatz algoritmen

 nej ja

 nej

 ja

 Man kan testa Collatz algoritmen i appen Mattekollen där den är kodad i Python. Ladda

ned appen eller kör den som Webbapp: app.mattekollen.se  En mobil pythonmiljö. El-

ler kör den direkt som webbapp: beta.mattekollen.se/#/app/coding. Prova koden med olika

startvärden för att kolla om algoritmens talföljder alltid slutar med 1.

Heltal * 3 + 1
Heltalet

udda?

Ta ett positivt heltal

Start

Slut

Heltal / 2

Heltal

= 1?

http://beta.mattekollen.se/#/app/coding

 40

Flödesschemat visualiserar algoritmens logisla struktur som är grundläggande. Men

för att koda kan det vara fördelaktigt att formulera algoritmen även som pseudokod

som ligger närmare programkoden än flödesschemat.

Pseudokoden till Collatz algoritmen

 Läs in ett positivt heltal
 SÅ LÄNGE talet ≠ 1 REPETERA:
 OM talet är udda
 multiplicera med 3, addera 1
 ANNARS
 dividera talet med 2
 Skriv ut talet

Som man ser har vi redan anpassat texten i pseudokoden till programmering, t.ex.

med formuleringar som Läs in ... och Skriv ut I följande program

inplementerar vi Collatz algoritmen:

// Collatz.cs

// Läser in ett positivt heltal och tar det gånger 3 + 1 om

// det är udda, annars delar det med 2, tills det blir 1

using System;

class Collatz

{
 static void Main()

 {
 Console.Write("\n\tMata in ett positivt heltal:\t";

 int number = int.Parse(Console.ReadLine());

 Console.Write("\n" + number); // Startvärde

 while (number != 1) // Sålänge talet inte är 1

 {
 if (number % 2 == 1) // Om talet är udda, gångra
 number = 3 * number + 1; // det med 3 och addera 1

 else // Om talet är jämnt,

 number = number / 2; // dela med 2

 Console.Write("\t" + number);

 }
 Console.WriteLine("\n");

 }
}

I följande körexempel matas in ett tresiffrigt startvärde. Du kan försöka med andra.

 41

En metod i C# är en namngiven kodmodul (ett antal satser) i en klass
som utförs när metoden anropas. Vid anropet kan den ta emot indata,
s.k. parametrar, bearbeta dem och returnera utdata, s.k. returvärde.

Method Main()

 Mata in ett positivt heltal: 135

135 406 203 610 305 916 458 229

688 344 172 86 43 130 65 196

98 49 148 74 37 112 56 28

14 7 22 11 34 17 52 26

13 40 20 10 5 16 8 4

2 1

Metoder och program i C#

De flesta känner till begreppet funk-

tion från matematiken. Där kan en

funktion t.ex. beskrivas med en for-

mel y = f(x) som beräknar ett värde y

utgående från ett annat värde x. Även

i programmering finns den matematiska synen på funktion som underliggande kon-

cept och historisk utgångspunkt. Men under tiden har den fått en bredare tolkning

då den tillämpats på all datoriserad problemlösning.

En metod är en funktion som definieras i en klass. I objektorienterade programme-

ringsspråk är metoder inkapslade i klasser. I C# är detta obligatoriskt. Därför finns

det i C# till skillnad från C++ inga fristående funktioner. Bortser man från denna

överordnade struktur och ser på det ”inifrån”, är funktioner och metoder identiska.

Som ”ett antal satser” är en metod en del av en klass som isoleras och skrivs sepa-

rat som en anropbar modul för att kunna användas även i andra klasser. Man kan

jämföra en metod med en ”svart låda” i vilken man stoppar in indata och får ut ut-

data: Indata kallas även parametrar och utdata returvärde:

 Parametrar (indata) Returvärde (utdata)

En metod kan ha 0, 1 eller flera parametrar. Den kan ha 0 eller 1 returvärde. En

metod kan alltså inte ha flera returvärden. Både parametrarna och returvärdet kan

vara tal, tecken, strängar, sanningsvärden eller referenser till objekt. Metoden bear-

betar de ev. inkommande parametrarna på ett visst sätt och returnerar ev. ett värde.

Metod

 42

Det finns metoder med och sådana utan returvärde. De senaste kallas för void-

metoder.

Vi har hittills använt några C#-biblioteksmetoder, t.ex. Console.Write(), Con-

sole.WriteLine(), Console.Read(), Console.ReadLine(), int.Par-

se(), … utan att behöva veta hur de var kodade, därför: ”svarta lådor”. De var

förprogrammerade åt oss och vi använde dem bara för att åstadkomma vissa funk-

tionaliteter. I detta avsnitt ska vi nu lära oss att själva skriva metoder. Men en me-

tod som vi redan har skrivit själva – och det har vi gjort i alla våra programexem-

pel – är metoden Main(), för den är obligatorisk. Så här definieras C# program:

Ett C# program är en samling av klasser, av vilka en och endast

en måste innehålla metoden Main().

När programmet körs startar exekveringen i Main().

Modularisering av Collatz

Här vill vi modularisera programmet Collatz på sid 40. Dvs vi vill separera en

del av koden som känns meningsfullt att isolera och skriva den i en metod. Vilken

del det ska vara är inte självklart. Nedan ser du ett förslag för ett sådant beslut:

// Collatz_mod.cs

// Deklarerar klassen Collatz_mod och definierar i

// den metoden Collatz som utför Collatz algoritmen

using System;

class Collatz_mod

{
 public static void Collatz(int n) // n formell parameter

 {
 while (n != 1) // Så länge talet inte är 1

 {
 if (n % 2 == 1) // Om talet är udda gångra

 n = 3 * n + 1; // det med 3 och addera 1

 else // Om talet är jämnt,

 n = n / 2; // dela med 2

 Console.Write("\t" + n);

 }
 }
}

Som man ser har vi isolerat algoritmens kärna som utgör själva logiken i det hela,

dvs det som Collatz algoritmen väsentligen innehåller och låtit alla andra tekniska

detaljerna vara utanför, t.ex. inläsningen av startvärdet, utformningen av utskriften

osv. Alla dessa delar stannar kvar i metoden Main() som anropar metoden Col-

latz() exakt på samma ställe som koden för Collatz algoritmen stod. Nedan ser

vi dessa delar:

 43

// Collatz_Test.cs

// Läser in ett positivt heltal number och anropar

// metoden Collatz i klassen Collatz_mod som tar in

// number som parameter och utför Collatz algoritmen

using System;

class Collatz_Test

{
 static void Main()

 {
 Console.Write("\n\tMata in ett positivt heltal:\t");

 int number = int.Parse(Console.ReadLine());

 Console.Write("\n" + number); // Startvärde

 Collatz_mod.Collatz(number); // Anrop av metoden

 // Collatz med aktuell

 // parameter number

 Console.WriteLine("\n");

 }
}

Det modulatiserade programmet ovan producerar samma utskrift som det ur-

sprungliga programmet Collatz på sid 41. Bara att ”det modulatiserade program-

met” till skillnad från tidigare nu består av två klasser, lagrade i två filer: Col-

latz_mod.cs och Collatz_Test.cs. Därför måste båda filerna laddas i samma

projekt i Visual Studio när man kör programmet. Annars kan den avgörande satsen

Collatz_mod.Collatz(number);

dvs anropet av metoden Collatz() inte hitta klassen Collatz_mod som innehål-

ler metodens definition. Vi har ju separerat den från Main(). Den står i en annan

klass som i sin tur finns i en annan fil. Båda filer utgör ett program och därmed

också ett projekt i Visual Studio. Det är ju just meningen med modularisering. Nu

kan man anropa metoden Collatz() även från alla andra program som man ev.

skriver, även från sådana som andra skulle skriva. Metoden Collatz() har blivit

en generell modul som alla utvecklare kan använda sig av.

 44

1.10 Algoritm för platsbyte

Låt oss anta vi har två tecken char1 och char2 som vi vill byta pltas på. För att

kunna göra det behövs en tredje, temporär plats. Vi börjar med att lägga undan

char1 på den temporära platsen temp (steg 1). Sedan byter vi plats på char2 och

lägger det i char1 som tömdes i steg 1 (steg 2). Och slutligen, i steg 3, lägger vi

char1 som under tiden mellanlagrats i temp, in i char2 som tömdes i steg 2:

 1

 2 3

 char1 char2 temp

Illustrationen ovan är en grafisk beskrivning av algoritmen där 1, 2 och 3 anger

ordningen i den. Den tredje platsen temp, behövs, för att temporärt lägga undan det

felplacerade tecknet. I följande program inplementerar vi algoritmen ovan:

// MiniSort.cs

// Läser in 2 tecken och sorterar dem i teckentabellens ord-

// ning med hjälp av en algoritm för platsbyte av två objekt

using System;

class MiniSort

{
 static void Main()

 {
 char char1, char2, temp;

 Console.Write("\n\tTvå osorterade tecken:\n\n\t" +

 "Mata in två tecken skilda med mellanslag:\t");

 string text = Console.ReadLine();

 char1 = text[0]; // Första tecknet tas ut

 char2 = text[2]; // Andra tecknet tas ut

 if (char1 > char2) // tecknens ASCII-koder jämförs

 {
 temp = char1; // Algoritm för platsbyte

 char1 = char2; // av två tecken

 char2 = temp;

 }

 Console.WriteLine("\n\tDe två tecknen sorterade:\t\t\t"

 + char1 + ' ' + char2 + "\n");

 }
}

I följande körexempel byts plats på de inmatade tecknen Z och A som har blivit in-

matade i fel ordning. De sorteras enligt teckentabellens ordning:

 45

 Två osorterade tecken:

 Mata in två tecken skilda med mellanslag: Z A

 De två tecknen sorterade: A Z

Algoritmens kärna ligger i if-satsen med sina tre satser. I den första satsen lägger

vi undan char1:s värde i temp (steg 1 i bilden ovan). I den andra satsen byter vi

plats på char2:s värde och lägger det i char1 (steg 2). Och slutligen läggs temp

som under tiden har mellanlagrat char1:s värde, in i char2 (steg 3). Platsbytet på

char1 och char2 äger endast rum om de inmatade teckenvärdena är felplacerade

dvs endast om char1 > char2. Annars behåller de sina platser.

I körexemplet ovan jämför if-satsens villkor char1 > char2 värdena Z och A

med varandra. Men tecken kan inte sättas i en relation av typ ”större än” till varan-

dra. I själva verket är det Unicode-koderna till Z och A som jämförs med varandra.

Det är endast tal som kan jämföras med varandra. Jämförelseoperatorn > behandlar

char-variablerna char1 och char2 som tal precis som aritmetiska operatorer gör.

Försök att modularisera MiniSort

I programmet MiniSort (sid 44) lyckades vi att implementera algoritmen som kan

användas för att sortera även större datamängder, eftersom en sådan algoritm byg-

ger på sortering av två objekt. Men för att kunna göra det måste vi separera den

från det aktuella program som vi testade algoritmen i, dvs vi måste modularisera

den och skriva den som en separat metod. Detta ska vi försöka göra nu. Så här

skulle en sådan metod se ut, när vi separerar koden som utgör algoritmen från Mi-

niSort. På engelska kallas denna algoritm för Swap eller Swapping.

// NoSort.cs

// Klass med metoden TrySwap() som tar in 2 tecken t1 och t2

// och byter plats på dem enligt algoritmen MiniSort (sid 44)

class NoSort

{
 public static void TrySwap(char t1, char t2)

 {
 char temp;

 if (t1 > t2)

 {
 temp = t1; // Algoritm för platsbyte

 t1 = t2; // av de två tecknen

 t2 = temp; // t1 och t2

 }
 }
}

 46

Algoritmdelen av MiniSort (sid 44) har flyttats till en metod där t1 och t2 är for-

mella parametrar. Så kallas parametrar som skrivs i en metods definition till skill-

nad från de aktuella parametrar som skrivs i metodens anrop. Metoden TrySwap

anropas i följande program med de aktuella parametrarna char1 och char2:

// NoSortTest.cs

// Läser in 2 tecken char1 och char2, skickar dem till meto-

// den TrySwap() i klassen NoSort som ska sortera dem

using System;

class NoSortTest

{
 static void Main()

 {
 char char1, char2;

 Console.Write("\n\tTvå osorterade tecken:\n\n\t" +

 "Mata in två tecken skilda med mellanslag:\t");

 string text = Console.ReadLine();

 char1 = text[0]; // Första tecknet tas ut

 char2 = text[2]; // Andra tecknet tas ut

 NoSort.TrySwap(char1, char2); // Metodanrop

 Console.WriteLine("\n\tDe två tecknen sorterade:\t\t\t"

 + char1 + ' ' + char2 + '\n');

 }
}

Att vi kallar klassen som definierar metoden TrySwap för NoSort förstår man när

man testkör programmet NoSortTest. Koden kan både kompileras och exekveras.

Det finns inget syntax- eller annat fel i programmet. Det är bara att ingen sortering

sker. Tecknen förblir osorterade. Matar man in dem i fel ordning skrivs de ut även i

fel ordning – till skillnad från programmet MiniSort.

Följande körexempel visar att programmet inte gör som vi vill:

 Två osorterade tecken:

 Mata in två tecken skilda med mellanslag: Z A

 De två tecknen sorterade: Z A

Testa gärna själv. Och om du tror att det beror på att de formella parametrarna t1

och t2 i metoden TrySwap har andra namn än de aktuella char1 och char2 i pro-

grammet NoSortTest prova gärna att välja samma namn i båda. Det är inte fel ur

 Andra beteckningar som förekommer i litteraturen är anropsparametrar eller argument.

Speciellt argument används ofta som är en inkörd matematisk term: T.ex. är 3 ett anrop av

funktionen f(x) = x där x är – i matematiska termer – variabeln och 3 argumentet. I pro-

grammeringen brukar vi kalla x för den formella och 3 för den aktuella parametern.

 47

varken kompilerings- eller exekveringssynpunkt. Bara att det inte hjälper att sorte-

ra tecknen.

Felet är ett tanke- resp. ett kunskapsfel, om man nu kan beteckna det så. Vi har

nämligen inte tillräckliga kunskaper för att förstå vad som händer när man modula-

riserar, dvs separerar kod och lägger den i två olika moduler. Närmare bestämt vet

vi inte exakt hur parametrarna överförs från den ena till den andra modulen. Därför

behandlar vi i nästa avsnitt denna fråga. Det finns nämligen inte bara i C# utan i al-

la programmeringsspråk olika mekanismer för överföring av parametrar mellan en

metods definition och dess anrop. Avgörande för valet mellan dessa mekanismer är

parametrarnas datatyper. Vi kommer att precisera detta i nästa avsnitt.

 48

1.11 Parameteröverföring i metoder

I det här avsnittet ska vi lära oss på vilket sätt parametrar överförs mellan metoder.

Det finns som sagt olika typer för parameteröverföring. En av dem är värdeanrop

(Call by Value) som demonstreras i följande program. En annan heter referens-

anrop (Call by reference) och tas upp efteråt.

Värdeanrop (Call by value)

// CallByVal.cs

// Demonstrerar Värdeanrop: Vid metodanrop överförs VÄRDENA

// De formella parametrarna (kopior) ändras i metoden

// Ändringen påverkar inte aktuella parametrarna (originalen)

using System;

class CallByVal

{
 static void Main()

 {
 int hour = 5, min = 35, sec = 49;

 Console.WriteLine("\nI Main() FÖRE anrop av metod:\ttim="

 + hour + ", min=" + min + ", sec=" + sec);

 int total = totalsek(hour, min, sec); // Anrop av metod:

 // De aktuella pa-

 // raparametrarnas

 // VÄRDEN skickas

 Console.WriteLine("\nI Main() EFTER anrop av metod:" +

 "\ttim=" + hour + ", min=" + min + ", sec=" + sec +

 "\n\t\t\t\tger " + total + " sekunder totalt." +

 "\nVÄRDEANROP:\n\nÄndringen av" + " de formella " +

 "parametrarna (kopior)\npåverkar inte de " +

 "aktuella parametrarna (originalen).\n") ;

 }
/***/

 static int totalsek(int t, int m, int s)

 {
 Console.WriteLine("\n\tI metoden FÖRE ändringen:\n\tt=" +

 t + ", m=" + m + ", s=" + s);

 int resultat = 3600 * t + 60 * m + s;

 t = m = s = 0; // Ändring av formella

 // parametrar

 Console.WriteLine("\n\tI metoden EFTER ändringen:\n\tt="

 + t + ", m=" + m + ", s=" + s);

 return resultat;

 }
/***/

}

 49

Varför har vi valt andra namn för de aktuella hour, min, sec än för de formella

parametrarna t, m, s fast de lagrar samma värden? Båda representerar timmar,

minuter och sekunder. Frågan är: Lagras dessa värden i 3 eller 6 minnesceller? Om

det är 3 vore valet av samma namn motiverat, därför att de lagrar samma värden.

Men om det är 6 vore det bättre att återspegla verkligheten även i koden genom att

välja olika namn för de aktuella än för de formella parametrarna.

I exemplet ovan läses in de i Main(). De formella parametrarna – i vårt exempel

t, m, s – måste alltid vara variabler som definieras i metoden totalsek():s pa-

rameterlista när denna skapas. Sina värden får de första gången inte tilldelade i me-

todens kropp utan från de aktuella parametrarna vid metodens anrop. Sedan ändras

deras värden i metoden: De sätts allihop till 0 för att testa vilken påverkan denna

ändring har på de formella parametrarna. Men för att ändå kunna få resultatet med

de ursprungliga värdena beräknas antalet totalsekunder och sparas undan i varia-

beln resultat som slutligen returneras från metoden. Innan dess skrivs ut värden

som ändrats till 0.

I Main() skriver vi ut de aktuella parametrarnas värden före och efter anropet av

metoden för att se om de formella parametrarnas ändring i metoden påverkar de

aktuella parametrarna. Följande körexempel visar att detta inte är fallet:

I Main() FÖRE anrop av metod: hour=5, min=35, sec=49

 I metoden FÖRE ändringen:

 t=5, m=35, s=49

 I metoden EFTER ändringen:

 t=0, m=0, s=0

I Main() EFTER anrop av metod: hour=5, min=35, sec=49

 ger 20149 sekunder totalt.

VÄRDEANROP:

Ändringen av de formella parametrarna (kopior)

påverkar inte de aktuella parametrarna (originalen).

Körexemplet visar att de formella och aktuella parametrarna har var sitt eget liv.

Det enda som relaterar dem till varandra är att de tar över värdena från varandra.

Ändringen av de formella parametrarna påverkar inte alls de aktuella parametrar-

na. Av detta kan man dra slutsatsen att hour, min, sec och t, m, s är två olika

uppsättnigar variabler. De lagras i 6 olika minnesceller. Även om vi skulle välja

samma namn för dem – vilket vore tillåtet då de ligger i två olika metoder och

därmed i två olika block – kommer namnen fortfarande beteckna 6 olika minnes-

celler. Även om beteckning är av sekundär betydelse vill vi i fortsättningen välja

andra namn för de aktuella än för de formella parametrarna för att återspegla den-

na verklighet. Kodens läsare ska inte luras som om de vore samma variabler pga

namnvalet.

 50

En annan slutsats av körningen ovan är: Parameteröverföringen mellan metoderna

totalsek() och Main() realiseras genom kopiering av värdena från de aktuella

till de formella parametrarna. Denna parameteröverföringsmetod kallas värdean-

rop därför att det är själva värden som kopieras över när metoden aropas. Min-

nesbilden av värdeanrop ser ut så här:

Värdeanropets minnesbild:

 hour t

 min m

 sec s

Ändring av kopiorna, de formella parametrarna t, m, s påverkar

inte originalen, de aktuella parametrarna hour, min, sec.

Vid denna parameteröverföringsmetod skapas alltid en dubbel uppsättning av min-

nesceller: 6 om vi har 3 parametrar. Därför leder värdeanrop oundvikligen till för-

dubblad minnesåtgång. Datatypen till respektive parameter är avgörande för den

automatiska tillämpningen av värdeanrop. Det gäller följande regel:

Fördubblingen av minnesåtgången anses inte som ett stort problem eftersom enkla

datatyper i alla fall tar upp relativt litet minnesutrymme. För datatyper som kräver

större minnesutrymme används en annan teknik som undviker denna fördubbling

och som heter referensanrop.

Ur minnessynpunkt är förstås fördubblingen av minnesåtgången en nackdel. Men

värdeanrop har även fördelen att just pga minnesbilden ovan de formella och de

aktuella parametrarna har var sitt liv och inte påverkar varandra. I vissa samman-

hang är detta önskvärt, i andra inte. Så, beroende på applikationen kan man välja

bland de två parameteröverföringsmetoderna värde- och referensanrop genom att

välja rätt datatyp till sina parametrar. Enkel datatyp leder automatiskt till värde-

anrop. Vilken datatyp som automatiskt leder till referensanrop ska vi ta upp på de

följande sidorna.

Referensanrop (Call by reference)

Värdeanrop använder sig av kopiering av parametervärdena till nya minnesceller

och tillämpas när parametrarna är enkla datatyper. Nackdelen med värdeanrop är

35 0

49 0

5 0 5

Kopiering

I C# väljs automatiskt värdeanrop (Call by Value) för parameter-

överföring vid metodanrop, om parametern är av enkel datatyp.

35

49

 51

att den medför fördubbling av minnesåtgången. Alternativet till det är referensan-

rop som överför minnesadressen istället för värdet och där man slipper denna nack-

del. Referensanrop är relaterad till datatypen referens som behandlades tidigare va-

rifrån också namnet härstammar. Anledningen är att parametrarnas datatyp auto-

matiskt styr valet av överföringsmetoden. Det gäller nämligen:

Samtidigt kommer vi att se att det för vissa problem t.o.m. är nödvändigt att använ-

da referensanrop då det inte går att modularisersa dem med värdeanrop. Man vill

t.ex. skicka vissa parametrar till en metod där de ändras och man vill få tillbaka

ändringen till huvudprogrammet. Som exempel tar vi:

Modularisering av MiniSort

På sid 46 lyckades vi inte att modularisera MiniSort (sid 44). Det berodde på att

metoden vi skrev tillämpade värdeanrop pga att dess parametrar var deklarerade till

den enkla datatypen char. Ändringen av de formella parametrarna t1 och t2 i me-

toden TrySwap (kopior) påverkade inte de aktuella parametrarna char1 och

char2 (originalen). De förblev oförändrade, se värdeanropets minnesbild (sid 50).

Det var ju de som vi skrev ut i Main() där vi anropade metoden. Vi skrev alltså ut

char1 och char2 som inte var ändrade, medan vi aldrig skrev ut t1 och t2 som

var ändrade. Vill vi ha ändringen kvar i Main() måste vi använda referensanrop

genom att deklarera våra parametrar till datatypen ref char, se referensanropets

regel ovan. Det gör vi nu:

// Swapping.cs

// Klass med metoden Swap() som tar in 2 tecken och byter

// plats på dem om de är i fel ordning enligt teckentabellen

// De ombytta parametrarna i Swap() blir även ombytta i den

// anropande metoden pga parametrarna är deklarerade som

// referenser med det reserverade ordet ref: Referensanrop

class Swapping

{
 public static void Swap(ref char t1, ref char t2)

 {
 char temp;

 if (t1 > t2)

 {
 temp = t1; // Algoritm för platsbyte

 t1 = t2; // av de två teckenvärdena

 t2 = temp; // t1 och t2

 }
 }
}

I C# väljs automatiskt referensanrop (Call by reference) för parameter-

överföring vid metodanrop, om parametern är av datatypen referens.

 52

Bearbetningsdelen av MiniSort (sid 44) har flyttats till en void-metod. Paramet-

rarna t1 och t2 är definierade som referenser. De tar inte emot några teckenvärden

från char1 och char2 (se nedan) utan endast deras adresser. t1 och ref char1 är

två olika referenser till samma värde char1. Samma sak är det med t2 och ref

char2. När värdena ändras i metoden genom referenserna t1 och t2 kan ändrin-

gen ses i Main() med char1 och char2:

// CallByRef.cs

// Läser in 2 tecken, skickar dem till metoden Swap() i klas-

// sen Swapping som sorterar dem i teckentabellens ordning

// Ändringen är synlig i Main() pga referensanrop som påtvin-

// gas med ref: adresserna överförs vid anrop, inte värdena

using System;

class CallByRef

{
 static void Main()

 {
 char char1, char2;

 Console.Write("\n\tTvå osorterade tecken:\n\n\t" +

 "Mata in två tecken skilda med mellanslag:\t");

 string str = Console.ReadLine();

 char1 = str[0]; // Första tecknet tas ut

 char2 = str[2]; // Andra tecknet tas ut

 Swapping.Swap(ref char1, ref char2); // Metodanrop

 Console.WriteLine("\n\tDe två tecknen sorterade:\t\t\t"

 + char1 + ' ' + char2 + '\n');

 }
}

Metoden Swap() ställer i rätt ordning tecken som är inmatade i fel ordning vilket

en körning av ovanstående program visar:

 Två osorterade tecken:

 Mata in två tecken skilda med mellanslag: Z A

 De två tecknen sorterade: A Z

Gör gärna följande test: Ta bort ref från definitionen av båda parametrarna i para-

meterlistan av metoden Swap(), så att t1 och t2 blir vanliga char-variabler. Ta

även bort ref från de aktuella parametrarna i anropet av metoden Swap() i

Main() så att värdena skickas och inte adresserna. Du kommer inte få tecknen sor-

terade i rätt ordning om du matar in dem i fel ordning. Anledningen är att genom

borttagningen av ref blir t1 och t2 variabler av enkel datatyp så att värdeanrop

tillämpas automatiskt. Ändringen av t1 och t2 i metoden kommer inte att påverka

char1 och char2 i Main().

 53

1.12 In- och utparametrar

Nu har vi lärt oss en hel del om metoder, med och utan returvärde, med en, flera

eller inga parametrar, värde- och referensanrop osv. Ändå kan vi inte returnera

flera värden från en metod. Det beror på att alla metoder i C# returnerar endast ett

eller inget värde. Men för att vara mer noggrant, borde vi lägga till med return-

satsen. Begreppet returvärde används i programmeringsterminologin endast för

värden som skickas med return-satsen via metodnamnet. I denna bemärkelse

finns det inga metoder med flera returvärden. Men metodens gränssnitt mot om-

givningen dvs mot andra metoder är inte begränsad till metodnamnet. Även para-

meterlistan tillhör gränssnittet och kan användas för kommunikation med andra

metoder. Hittills har denna kommunikation varit enkelriktad: Våra parametrar

importerade data bara in i metoden. Frågan är: Kan man inte använda dem även för

export av data ut ur metoden? I så fall skulle vi kunna få tillbaka även flera värden

från en metod genom att använda flera parametrar. Detta är möjligt fast man kallar

sådana data inte längre för returvärden då de inte skickas med return-satsen via

metodnamnet, utan via parametrarna. De kallas för utparametrar. Hittills har vi an-

vänt bara inparametrar. I detta avsnitt ska vi lära känna utparametrar. Det enda som

behövs för att känneteckna en parameter som utparameter är nämligen att definiera

den i parameterlistan som referens vilket kan göras med ref eller out.

I följande metod finns det en inparameter som tillför metoden ett värde och fem ut-

parametrar vars värden exporteras ur metoden. De kommer in i metoden oinitie-

rade, initieras där och används sedan i Main() som anropar metoden. I själva ver-

ket är utparametrarna endast referenser till de aktuella parametrarna i Main(). Där

är de endast definierade. I metoden sker initieringen med referenserna.

// OutParam.cs

// Tar in växelbeloppet a och delar upp det i antalet t 10-

// kronor, f 5-kronor, o 1-kronor, h 50-öringar och resten r

// i ören. Endast b är en inparameter pga enkel datatyp t, f,

// o, h och r är utparametrar pga referensdatatypen out int

class OutParam

{
 public static void Change(double a, out int t, out int f,

 out int o, out int h,

 out int r)

 {
 int total = (int) (a * 100); // Växeln

 t = total / 1000; // 10-kr

 f = (total % 1000) / 500; // 5-kr

 o = ((total % 1000) % 500) / 100; // 1-kr

 h = (((total % 1000) % 500) % 100) / 50; // 50-öringar

 r = (((total % 1000) % 500) % 100) % 50; // rest i ören

 }
}

 54

Den reala bakgrunden till metoden är följande problem: I en automat erbjuds vissa

varor. Man väljer en vara och stoppar in en viss summa pengar, i regel mer än

varan kostar. Sedan ska automaten ge tillbaka växelpengar vilket endast är möjligt

med ett antal myntslag som är föreskrivna i automaten. Låt oss säga det är 10-, 5-,

1-kr och 50-öringar. I så fall måste växelbeloppet omvandlas till detta mynt”sy-

stem”. Just denna beräkning utförs av void-metoden Change() ovan. Men hur

genomförs omvandlingen med de uttryck för t, f, o, h och r som står i meto-

den? Följande algoritm löser problemet:

Algoritm för omvandling av ett belopp till olika myntslag

Eftersom denna algoritm endast fungerar för heltal måste växelbeloppet b som är

en double först konverteras till int, vilket görs i metoden Change():s första sats

explicit eftersom automatisk typkonvertering inte kan omvandla nedåt i datatyps-

hierarkin. Växelbeloppet i kronor och ören konverteras till ett rent örebelopp som

lagras i int-variabeln total. I fortsättningen står alltså det givna växelbeloppet i

variabeln total.

1. För att få antalet 10-kronor divideras total med 1000 då 10-kr är 1000 ören:

t = total / 1000;

Hur många gånger ryms 1000 – eller 10-kronor – i total? Det antalet tilldelas till

t. Eller med andra ord: 1000 dras av från total så många gånger tills resten blivit

mindre än total. Det antalet som tilldelas till t blir antalet 10-kronor. Divisionen

ovan är inte vanlig division utan heltalsdivision då både total och 1000 är heltal.

Dvs total divideras med 1000, resultatet tas, resten ignoreras, t.ex. 6975/1000

ger 6. Se körexemplet på nästa sida. Resten 975 ignoreras här, men används i fort-

sättningen.

2. För att få antalet 5-kronor divideras resten som blev kvar från punkt 1 med

500 då 5-kronor är 500 ören: f = (total % 1000) / 500;

”Resten som blev kvar från punkt 1” är just (total % 1000). Här används en

annan operator som är besläktad med heltalsdivision, nämligen modulooperatorn %

som inte har att göra med procenträkning utan ger resten vid heltalsdivision. T.ex.

6975 % 1000 ger 975. Efter att ha dragit av alla 10-kronor från total divideras

resten med 500 för att få reda på hur många 5-kronor som finns i total. T.ex.

975/500 ger 1. Resultatet av denna division ges till f, resten ignoreras och an-

vänds i fortsättningen.

I ytterligare tre steg skulle man kunna förklara de övriga formlerna för beräkning

av e, h och r. Men nu har mönstret i algoritmen kommit fram: Man tar förra

stegets formel, ersätter / med % och lägger till en heltalsdivision med den nya

enhetens örebelopp. I det allra sista steget däremot, där man är ute efter allra sista

resten i öre, måste % användas hela vägen. Självklart är restörebeloppet inte av

praktiskt intresse när automaten inte kan spotta ut det.

 55

För att testa algoritmen ovan anropas metoden Change() av följande program:

// OutparamTest.cs

// Efter inköp av en vara i en automat ska växeln ges till-

// baka i form av ett antal föreskrivna myntslag:

// 10-kr, 5-kr, 1-kr, 50-öringar (och en rest i öre)

// Main() läser in ett växelbelopp, skickar det till metoden

// Change() i klassen OutParam som omvandlar växeln till mynt

using System;

class OutparamTest

{
 static void Main()

 {
 double amount;

 int ten, five, one, half, rest; // Iinitiering behövs ej

 Console.Write("\nAnge ett växelbelopp i kr & ören: ");

 amount = Convert.ToDouble(Console.ReadLine());

 OutParam.Change(amount, out ten, out five, // Endast ut-

 out one, out half, // paramet-

 out rest); // rarnas ad-

 // resser skickas

 Console.WriteLine("\n" + amount + " kr =\t" +

 ten + " tio-kronor\n\t\t" +

 five + " fem-krona\n\t\t" +

 one + " en-kronor \n\t\t" +

 half + " femtio-öring\n\nDet blir\t" +

 rest + " ören kvar\n");

 }
}

Växelbeloppet läses in. Metoden Change() anropas varvid förutom belopp de

aktuella parametrarna ten, five, one, half och rest:s adresser skickas. Dessa

tas emot i Change() av t, f, o, h och r, referenserna till ten, five, one, half

och rest. När beräkningen görs där med hjälp av referenserna kan man komma åt

resultaten i Main() därför att t är en referens till ten. Samma sak är det med de

andra parametrarna.

Ett körexempel visar att vi får tillbaka de värden som beräknas i metoden pga refe-

rensanrop som automatiskt tillämpas vid utprametrar av referenstyp.

Ange ett växelbelopp i kronor, ören: 69,75

69,75 kr = 6 tio-kronor

 1 fem-krona

 4 en-kronor

 1 femtio-öring

Det blir 25 ören kvar

 56

Övningar till kap 1

Läs kap 1 Algoritmer och programmering, 1.1 – 1.3, sid 6-14

Besvara följande frågor:

1.1 Med vilket namn betecknas de språk som de första datorerna program-

merades med? Vilka egenskaper hade de? Vad är deras största skillnad till

dagens programmeringsspråk?

1.2 Vad bestod den tekniska innovationen av som John von Neumann ut-

vecklade 1944?

1.3 Vad karaktäriserar de programmeringsspråk som kallas för lågnivåspråk?

Varför ”låg”?

1.4 Vilket var det första högnivåspråket? Varför ”hög”?

1.5 Redogör för skillnaderna mellan begreppen assemblering, kompilering och

interpretering.

1.6 Nämn ett exempel på programmeringsspråk som använde en av metoderna i

fråga 5.

1.7 Vad var det första användningsområdet för programmering?

1.8 Finns det fortfarande kod som används som är skriven i något av de första

programmeringsspråken? Nämn några sådana samt deras användningsom-

råde.

1.9 Vilket var det första programmeringsspråk som introducerade kontrollstruk-

turer i programmeringen?

1.10 Vad menas med deklarativ programmering? Är C# ett deklarativt språk?

1.11 Nämn några underkategorier till deklarativ programmering.

1.12 Vilken programmeringsfilosofi ligger till grund för den algoritmoriente-

 rade synen?

1.13 Beskriv med egna ord händelsestyrd programmering. Nämn exempel.

1.14 Vad karaktäriserar det som kallas för spaghettiprogrammering? Vad är

 huvudkritiken mot den?

 57

1.15 Vilket programmeringstekniskt koncept kan ersätta spaghettiprogram-

 mering?

1.16 Vad är den traditionella, procedurala synen på programmering som råd-

 de på 60- och 70-talet?

1.17 Vad är den objektorienterade synen på programmering som kom upp på

 80-talet?

1.18 Mellan vilka två programmeringsspråk går historiskt skiljelinjen mellan

 procedural och objektorienterad programmering? När ungefär inträffade

 övergången?

1.19 Vad var anledningen till paradigmskiftet inom programutveckling?

1.20 Vilka för- och nackdelar har enligt din åsikt den procedurala synen på

 programmering? Besvara samma fråga angående den objektorienterade

 synen

1.21 Följande pseudokod beskriver en algoritm för hårtvätt:

 Start hårtvätt

 Blöt håret

 SÅ LÄNGE håret känns smutsigt

 massera in shampo

 skölj

 OM solen skiner

 låt håret självtorka
 ANNARS

 använd hårtorken

 Slut hårtvätt

a) Vilka delar av pseudokoden är instruktioner, vilka är villkor och

 vilka är kontrollstrukturer? Förklara ditt svar.

b) Dela in instruktionerna i huvud- och underinstruktioner.

c) Rita ett flödesschema till pseudokoden ovan.

1.22 Följande algoritm – Kalle-algoritmen – är formulerad på vanligt språk:

På vardagar går Kalle upp. Han tvättar sig, om mamman tittar på.

På söndagar sover Kalle vidare tills mamman ropar honom till

frukost, i så fall gör han som på vardagar.

a) Rita ett flödesschema till Kalle-algoritmen. Anta att lördag är en vardag.

 b) Översätt Kalle-flödesschemat till pseudokod.

 c) Finns det i Kalle-algoritmen möjligheten till en evighetsloop?

 När skulle den kunna inträffa? Hur kan den förhindras?

 58

1.23 Är följande pseudokod logiskt identisk med Kalle-algoritmen från övn 1.22?

 Start Kanske_Kalle?

 OM det är söndag

 sover Kalle vidare

 TILLS mamma ropar till frukost
 ANNARS

 går han upp

 OM mamma tittar på

 tvättar han sig

 Slut Kanske_Kalle?

1.24 Rita flödesschemat till följande pseudokod:

 Sätt på radion

 Välj en kanal och lyssna

 SÅ LÄNGE du inte har hittat ett bra program

 byt kanal

 lyssna

 Fortsätt att lyssna på det valda programmet

 Stäng av radion

1.25 Skriv ett C# program som läser in två heltal, multiplicerar dem med varan-

dra och skriver ut resultatet blandat med förklarande text. Om du t.ex. matar

in 3 till det första och 4 till det andra heltalet, ska programmet skriva ut: 3

gånger 4 är 12. Utveckla programmet vidare med ytterligare räkneopera-

tioner, kanske så småningom till en liten kalkylator, se 1.29 Kalkylatorn

(Projektuppgift 1).

1.26 Rita ett flödesschema till följande pseudokod:

 Start Vinterklädsel_1

 Läs av temperaturen

 OM temperatur < 0

 ta sjal, mössa och handskar

 ANNARS OM temperatur < 5

 ta sjal och mössa

 ANNARS OM temperatur < 10

 ta sjal
 ANNARS

 slipper du vinterklädsel

 Slut Vinterklädsel_1

Använd dina programmeringskunskaper för att koda pseudokoden ovan och

flödesschemat du ritat, till ett C# program. Läs in ett värde för temperatur

och låt programmet avgöra val av klädsel genom att skriva ut "Ta sjal, mös-

sa, handskar... " eller liknande. För kontrollstrukturen flervägsval kan du

använda if-else-stegen som kodas i C# på samma sätt som i C++.

 59

1.27 Algoritmen i övn 1.26 ovan kan formuleras med följande pseudokod:

 Start Vinterklädsel_2

 Läs av temperaturen

 VÄLJ fall ur

 temperatur < 0: ta sjal, mössa och handskar

 temperatur < 5: ta sjal och mössa

 temperatur < 10: ta sjal

 Annars: slipper du vinterklädsel

 Slut Vinterklädsel_2

Rita flödesschemat till pseudokoden ovan och undersök den logiska likhe-

ten mellan flödesscheman i övn 1.26 och övn 1.27.

1.28 Collatz algoritmen har modulariserats med void-metoden Collatz() som

är definierad i klassen Collatz_mod, se sid 42. Modularisera Collatz algo-

ritmen med en metod med returvärde istället. Dvs definiera en metod pub-

lic static int Collatz() som endast returnerar ETT tal i Collatz-se-

kvensen. Anropa metoden från en annan klass’ Main().

Tips: Placera loopen samt utskriftssatsen i huvudprogrammet som anropar

metoden. För att dataflödet mellan loopen och metoden ska fungera tillämpa

referensanrop.

1.29 Kalkylatorn (Projektuppgift 1) I denna uppgift ska skapa en klass

Calculator skapas som stödjer följande funktionaliteter: addition, subtrak-

tion, multiplikation, division och potentiering samt att kunna ange det stör-

sta och minsta av två inmatade tal.

Dessutom ska din kalkylator vara igång kontinuerligt tills användaren väljer

att stänga av den, vilket innebär att du måste lägga in en loop. De olika

räkneoperationerna ska definieras i separata metoder och anropas i Main().

Följande metoder ska definieras i klassen Calculator:

public double Add(double operand1, double operand2)

{

// Additon av operand1 och operand2

}

public double Sub(double operand1, double operand2)

{

// operand1 - operand2

// Även subtraktion av negativa tal ska vara möjligt

}

public double Mult(double operand1, double operand2)

{

 // Multiplikation av parametrarna

}

 60

public double Div(double operand1, double operand2)

{

 // operand1 / operand2

 // Division med 0 får ej förekomma (operand2 != 0)

}

public double Potens(double operand1, double operand2)

{

 // Beräkning av potens: operand1 upphöjt till operand2

}

public double max(double operand1, double operand2)

{

 // Returnera det större värdet av operand1 och operand2

 // Här kan du använda dig av den födefinierade metoden

 // Math.Max(double a, double b) för att snabbt

 // avgöra vilken av operanderna som är större

}

public double Min(double operand1, double operand2)

{

 // Returnera det mindre värdet av operand1 och operand2

 // Math.Min(double a, double b) kan användas

}

Programmet skall exekvera kontinuerligt tills användaren väljer att avsluta

körningen. För att åstadkomma detta kan du exempelvis använda dig av

en do-sats. Kalkylatorn kan avslutas genom att användaren matar in t.ex.

tecknet ’q’ (Quit) istället för en operator.

Du får själv bestämma om du vill placera all kod i en fil eller om du hellre

skapar en separat fil för klassen Calculator med alla ovannämnda me-

toder och en klass med Main() i en annan fil som testar klassen Calcu-

lator. Det senare är att föredra.

Det är upp till dig om du lägger in kod för att kunna hantera fel inmatning

av operator eller andra felaktiga inmatningar.

 61

Kapitel 2

Logik för blivande

programmerare

 Ämne Sida Program

2.1 Logiska operatorer 62 AND_OR

- Sanningstabeller 64

2.2 Datatypen bool 67 TruthTab

2.3 NEGATION som logisk operator 69
- Gissa tal med NEGATION 69 GuessNEG

- Logiska uttryck 71

2.4 Programserien Testa lösenord 73 Passwd

­ Metoden Equals() 74

­ Kombination av NEGATION, OCH, ELLER 75 PasswdCaps

­ De Morgans lagar 77

 Övningar till kapitel 2 83

 62

2.1 Logiska operatorer

Att syssla med logik inom programmering är inte så konstigt. Vi har redan gjort det

redan i förra kapitlet när vi använde avslutningsvillkor för våra kontrollstrukturer.

Logiskt korrekt formulerade avslutningsvillkor är avgörande för hantering av kon-

trollstrukturer, t.ex. för att undvika evighetsloopar. Begreppet villkor har följt oss

redan från bokens allra första kapitel: Då diskuterades skillnaden mellan instruk-

tion och villkor i algoritmen Morgonsyssla (sid 21). Medan en instruktion (sats) är

ett kommando, ett befäl som måste utföras kan ett villkor endast testas för att fatta

ett beslut, träffa ett val mellan olika alternativ, t.ex. för att avgöra om en loop ska

fortsätta eller upphöra. Alla villkor vi använt hittills i våra program med kon-

trollstrukturerna if, if-else, do, while och for har varit s.k. enkla villkor. Ett

villkor heter enkelt om dess sanningsvärde – sant eller falskt – kan bestämmas di-

rekt, utan att blanda in andra villkor eller använda s.k. logiska operatorer som vi

ska lära känna i detta avsnitt. Exempel på enkla villkor är tal == 0, i < 5 eller a

<= 9. Enkla villkor kan bildas med jämförelseoperatorer. Nu ska vi gå ett steg vida-

re:

När man sätter ihop enkla villkor och kombinerar dem med varandra uppstår sam-

mansatta villkor. Men hur ska man sätta ihop två enkla villkor? Det kan endast gö-

ras om det finns något som binder samman dem. Detta ”något” kallas för en logisk

operator. Exempel på logiska operatorer är det logiska OCH som i C# kodas med

&& och det logiska ELLER som symboliseras av dubbeltecknet ||. De opererar på

två enkla villkor och returnerar ett sanningsvärde. Man kallar dem för operatorer,

jämförbara med aritmetiska operatorer därför att även de ”räknar” på ett visst sätt,

bara att deras operander inte är tal utan villkor och deras returvärde inte heller är

tal utan ett sanningsvärde. Man sätter dem mellan två enkla villkor och får på detta

sätt ett sammansatt villkor. Här är några enkla exempel på sammansatta villkor

bildade med de logiska operatorerna OCH (&&) och ELLER (||):

 (number == 0) || (number > 0)
 (temp <= 10) && (temp >= 25)

 (guessedNo < 17) || (guessedNo > 17)

Vi kan se att sammansatta villkor är kombinationer av enkla villkor, logiska

operatorer och parenteser. Att de returnerar ett sanningsvärde beror på att de bildar

ett sammansatt villkor av två enkla. Man kan jämföra det med att bilda ett tal av

två genom att sätta + eller – mellan dem. Sammansatta villkor skiljer sig från enkla

genom inblandningen av logiska operatorer. Deras sanningsvärde kan inte längre

bestämmas direkt utan är beroende av de logiska operatorernas logiska innebörd.

När behöver man sammansatta villkor? Programmet AND_OR på nästa sida visar att

det är ganska enkla, vardagliga situationer där sammansatta villkor förekommer

som kräver användningen av logiska operatorer. Programmet använder samman-

satta villkor för att lösa ett problem som liknar Gissa tal: Ett val mellan tre alterna-

tiv. Trevägsvalet ska nu lösas utan switch-satsen med en kombination av nästlad

 63

if-else och sammansatta villkor med logiska operatorer – ytterligare en generell

metod att programmera flervägsval som vi tidigare hade nämnt (sid 185).

// AND_OR.cs

// Hämtar datorns tid och avgör om det är dags för dagens

// lunch: Trevägsval med sammansatta villkor och de logiska

// operatorerna OCH (&&) och ELLER (||). Klassen DateTime:s

// egenskap (datamedlem) Now ger ett objekt av typ DateTime

// som sätts till datorns aktuella datum och tid.

using System;

class AND_OR

{
 static void Main()

 {
 int hour = DateTime.Now.Hour; // Tar ut datortidens

 int min = DateTime.Now.Minute; // timme resp. minut

 Console.WriteLine("\n\tKlockan är " + hour + '.' + min);

 if ((hour >= 11) && (hour < 14))

 Console.WriteLine("\n\tDagens lunch kan serveras:\t");

 if ((hour < 11) || (hour >= 14))

 {
 Console.Write("\n\tDagens lunch kan ej serveras ");

 if (hour < 11)

 Console.WriteLine("eftersom det är för tidigt:");

 else

 Console.WriteLine("eftersom det är för sent:");

 }

 Console.WriteLine("\n\tDagens lunch serveras mellan" +

 " kl 11 och 14\n");

 }
}

Körs programmet ovan vid olika tidpunkter som motsvarar de tre alternativen före

kl 11, mellan 11-14 och efter kl 14 får man de tre olika utskrifterna nedan:

 Klockan är 10.45

 Dagens lunch kan ej serveras eftersom det är för tidigt:

 Dagens lunch serveras mellan kl 11 och 14

 Klockan är 12.11

 Dagens lunch kan serveras:

 Dagens lunch serveras mellan kl 11 och 14

 64

 Klockan är 14.21

 Dagens lunch kan ej serveras eftersom det är för sent:

 Dagens lunch serveras mellan kl 11 och 14

Det första sammansatta villkoret i programmet ovan är:

(hour >= 11) && (hour < 14)

Den logiska operatorn && kombinerar de två enkla delvillkoren hour >= 11 och

hour < 14 till ett sammansatt villkor vars sanningsvärde beror på de båda enkla

delvillkorens sanningsvärden samt den logiska innebörden av operatorn &&. Paren-

teserna kring de två enkla delvillkoren kan utelämnas därför de i alla fall evalueras

först. Vi har skrivit dem bara för att vara på den säkra sidan vad gäller prioriteten

mellan operatorerna. Den intuitiva innebörden av det logiska OCH i vanligt språk

är: Om hour:s värde är större än eller lika med 11 och samtidigt mindre än 14, så

är det sammansatta villkoret sant. Dvs om hour:s värde ligger mellan 11 och 14,

är villkoret sant. Det sammansatta villkoret beskriver alltså i det här fallet ett inter-

vall. För att testa om ett värde ligger i ett intervall är ett villkor av sammansatt typ

med operatorn && en lämplig konstruktion. I programmet AND_OR ska dagens

lunch serveras mellan klockan 11 och 14. Före kl 11 eller efter kl 14 ska ingen

dagens lunch serveras. Dvs om bara ett enkelt delvillkor hour >= 11 eller hour <

14 är falskt blir också hela det sammansatta villkoret falskt. För att det sam-

mansatta villkoret ska bli sant måste båda delvillkoren vara sanna. Dvs klockan

måste vara över (eller prick) 11 och samtidigt före 14.

Den logiska operatorn OCH

Logiken hos operatorn && kunde i exemplet ovan härledas från det vanliga

språkets betydelse för ordet OCH. Men hur avgör datorn som inte förstår vanligt

språk, sanningsvärdet hos ett villkor av sammansatt typ med den logiska operatorn

&& ? Hur är denna operator definierad? En sådan allmän definition av operatorn

&& är lagrad i datorn för att kunna bestämma sanningsvärdet till alla villkor som

involverar && vilket förstås gäller för alla logiska operatorer. Precis som det finns

definitioner för de aritmetiska operatorerna +, – , * och / , som datorn använder

för att beräkna aritmetiska uttryck, finns även definitioner för de logiska operato-

rerna, som datorn använder för att evaluera sammansatta villkor. Att evaluera ett

villkor betyder att bestämma dess sanningsvärde.

Sanningstabeller

Varje logisk operator definieras med en s.k. sanningstabell som definierar de san-

ningsvärden som gäller för just denna operator – jämförbart med de vanliga räkne-

operatorerna, t.ex. multiplikationen som definieras med multiplikationstabellen.

Den logiska operatorn OCH:s sanningstabell t.ex. ser ut så här:

 65

OCH:s sanningstabell

 p q p && q

true true true

true false false

false true false

false false false

I sanningstabellen ovan symboliserar p ett enkelt delvillkor, t.ex. hour >= 11 och

q det andra enkla delvillkoret, t.ex. hour < 14. Då blir p && q det sammansatta

villkoret, sammansatt av de två enkla delvillkoren med hjälp av operatorn &&. Ta-

bellen ska läsas radvis. Första raden (under strecket) säger: Om båda de enkla del-

villkoren p och q har sanningsvärdet true, får det sammansatta villkoret p && q

sanningsvärdet true. Den andra raden säger: Om delvillkor p har sanningsvärdet

true och delvillkor q sanningsvärdet false, får det sammansatta villkoret p && q

sanningsvärdet false osv. Sanningstabellen behandlar alla möjliga kombinationer

av värdena true och false för de enkla delvillkoren p och q. Det finns samman-

lagt fyra sådana kombinationer som är uppställda i tabellens två första kolumner.

Resultaten – sanningsvärdena för p && q – står i den tredje kolumnen. I och med

att tabellen innehåller alla möjliga kombinationer, definieras den logiska operatorn

&& generellt och återspeglar också den intuitiva innebörden av det logiska OCH i

vanligt språkbruk, nämligen: Om - och endast om - de båda enkla delvillkoren p

och q är sanna, är det sammansatta villkoret p && q sant, annars är det samman-

satta villkoret falskt.

Liknande gäller för sanningstabellen till den andra logiska operatorn som förekom-

mer i programmet AND_OR.

Den logiska operatorn ELLER

Det andra sammansatta villkoret i programmet OCH_ELLER är:

(hour < 11) || (hour >= 14)

Villkoret är sammansatt av de två enkla delvillkoren hour < 11 och hour >= 14

med hjälp av den logiska operatorn ||. Den intuitiva innebörden av det logiska

ELLER i vanligt språk är: Om hour:s värde är mindre än 11 eller större än eller

lika med 14, är det sammansatta villkoret sant, vilket i AND_OR innebär att ”Da-

gens lunch” inte ska serveras före 11 eller efter (eller prick) 14. Det räcker att

endast ett av delvillkoren antingen hour < 11 eller hour >= 14 är sant för att det

sammansatta villkoret ska bli sant. Endast om båda är falska, blir resultatet falskt.

Man inser att klockan inte samtidigt kan vara före 11 och efter (eller prick) 14, där-

för används här ELLER och inte OCH. Även här kan logiken hos operatorn ||

härledas från det vanliga språkets betydelse för ordet ELLER, närmare bestämt för

 66

ANTINGEN ELLER. Men den exakta logiska innebörden definieras som vanligt av

sanningstabellen:

ELLER:s sanningstabell

 p q p || q

true true true

true false true

false true true

false false false

I sanningstabellen ovan står p för ett enkelt delvillkor, t.ex. hour < 11 och q för

det andra enkla delvillkoret, t.ex. hour >= 14. Operatorn || binder samman dessa

två enkla delvillkor och bildar det sammansatta villkoret (hour < 11) || (hour

>= 14).

Förutom OCH och ELLER är NEGATION en viktig logisk operator. Den negerar sin

operand dvs vänder alla dess sanningsvärden till motsatsen. Vi kommer att behand-

la den logiska operatorn NEGATION senare.

Klassen DateTime

Programmet AND_OR hämtar den aktuella tiden från datorn innan det avgör om det

är dags för dagens lunch. För att hämta datorns tid till C#-programmet används

egenskaper som finns fördefinierade i klassen DateTime från C#:s bibliotek. Vi

behöver inte skriva något nytt using-direktiv för att få tag i denna klass eftersom

den finns med i namnutrymmet System. Klassen DateTime har bl.a. en egenskap

eller datamedlem som heter Now som returnerar ett objekt av typ DateTime som

initieras till datorns aktuella datum och tid. Detta DateTime-objekt har i sin tur en

datamedlem som heter Hour som tar ut timmen ur den aktuella tiden som ett

heltalsvärde. Därför tilldelar vi

DateTime.Now.Hour

till int-variabeln hour. Samma sak görs med den aktuella datortidens minut-

komponent. Andra delar av datum och tid kan hämtas med andra datamedlemmar

från objektet.

 67

2.2 Datatypen bool

I C# finns möjligheten att definiera logiska variabler med datatypen bool som är

en enkel datatyp och representerar sanningsvärdena sant och falskt. bool är namn-

given efter den engelske matematikern George Boole som verkade på 1800-talet

och formulerade logikens lagar genom att använda matematisk notation. Variabler

av typen bool kan endast anta sanningsvärdet true eller false.

Observera att true och false inte är vanliga strängar utan reserverade ord i C#

som representerar sanningsvärdena sant och falskt. De är alltså logiska konstanter

som kan ges till logiska variabler dvs variabler av typ bool. Datatypen bool till-

åter lagringen av sådana variabler. Detta utvidgar programmerarens möjligheter

avsevärt. T.ex. kan de sanningstabeller vi ställde upp i förra avsnitt för de logiska

operatorerna && och ||, även genereras av följande program som använder logiska

variabler dvs sådana av den nya datatypen bool:

// TruthTab.cs

// Lagrar sanningsvärden i logiska variabler som deklareras

// med den enkla datatypen bool

// Skriver ut sanningstabellerna till de logiska operatorerna

// && (OCH) och || (ELLER)

using System;

class TruthTab

{
 static void Main()

 {
 bool p, q; // Deklaration av logiska variabler

 Console.Write("\n p \t q\t\tp && q \t\tp || q\n" +

 "--\n");

 p = q = true; // Initiering av logiska variabler

 Console.Write(p + "\t" + q + "\t\t " + (p && q) +

 " \t\t " + (p || q) + '\n');

 p = true; q = false;

 Console.Write(p + "\t" + q + "\t\t " + (p && q) +

 " \t " + (p || q) + '\n');

 p = false; q = true;

 Console.Write(p + "\t" + q + "\t\t " + (p && q) +

 " \t " + (p || q) + '\n');

 p = q = false;

 Console.Write(p + "\t" + q + "\t\t " + (p && q) +

 " \t " + (p || q) + "\n\n");

 }
}

Följande sanningstabeller till operatorerna OCH och ELLER skrivs ut när program-

met ovan körs:

 68

 p q p && q p || q

--

True True True True

True False False True

False True False True

False False False False

I programmet TruthTab är variablerna p och q definierade som bool och kan

därför tilldelas värdena true eller false. De kallas även för booleska variabler

vilket är synonym med logiska variabler. Först initieras p och q båda till true

(framhävd med vit bakgrund) och skrivs ut i de första två kolumnerna i sannings-

tabellens första rad (efter rubriken). Sedan kombineras de med varandra i p && q

samt p || q vars sanningsvärden skrivs ut i tabellens tredje och fjärde kolumn. I

sanningstabellens andra rad (efter rubriken) upprepas utskriften, men den här gån-

gen med en ny tilldelning av true till p och false till q. I den tredje och fjärde

raden gås igenom de andra kombinationerna false till p och true till q samt

false till båda. Jämför man resultaten med de enskilda sanningstabellerna vi hade

ställt upp för de logiska operatorerna OCH och ELLER på sid 65/66 konstaterar man

överensstämmelse. Skillnaden är bara att vi då hade endast påstått sanningsvärdena

och motiverat dem med vår intuitiva uppfattning av logiken hos OCH och ELLER,

medan här låter vi programmet generera sanningsvärdena till de sammansatta

villkoren p && q och p || q via koden. Man kan också säga, vi låter programmet

applicera de fördefinierade operatorerna && och || på de fyra möjliga kombi-

nationerna av true och false och skriva ut deras resultat.

Man kan använda programmet TruthTab även för andra sammansatta villkor och

få fram deras sanningstabeller genom att skriva in dem i utskriftssatsen istället för

p && q resp. p || q.

 69

2.3 NEGATION som logisk operator

I de föregående avsnitten lärde vi känna de logiska operatorerna OCH och ELLER.

Nu ska vi komplettera vår lilla samling av logiska operatorer med NEGATIONen

vars symbol är ! . Men förväxla den inte med utropstecknet som förekommer i

jämförelseoperatorn != som står mellan två aritmetiska uttryck. Som exempel tar

vi ett Gissa tal-spel som använder slumptal som hemligt tal i dialog med en do-

loop. Vi ska utveckla spelets logik, speciellt loopens avslutningsvillkor med den
logiska operatorn NEGATIONen ! som kan skrivas framför ett logiskt uttryck för

att negera det.

// GuessNEG.cs

// Gissa tal-spelet med NEGATION

using System;

class GuessNEG

{
 static void Main()

 {
 Random r = new Random();

 int guessedNo, secretNo = r.Next(1, 21);

 bool wrongGuess; // Deklaration av logisk variabel

 do // do-loopen (avslutas med while)

 {
 Console.Write("\n\tGissa ett tal mellan 1 och 20 " +

 (Avsluta med 0):\t");

 guessedNo = int.Parse(Console.ReadLine());

 Console.Write("\n\t");

 wrongGuess = !(guessedNo == secretNo);// Initiering av

 if (guessedNo == 0) // logisk variabel

 {
 Console.WriteLine("Avbrott: Programmets hemliga " +

 "tal var " + secretNo + '\n');

 break; // Bryter do-loopen

 }
 if (guessedNo < secretNo)

 Console.Write("För LITET, försök igen!\n");

 if (guessedNo > secretNo)

 Console.Write("För STORT, försök igen!\n");

 } while (wrongGuess); // Fortsätter så länge fel gissat
 // Stoppar när gissningen är rätt

 if (!wrongGuess)

 Console.Write("\aGrattis, du har gissat rätt!\n\n");

 }
}

En körning av programmet ovan kan se ut så här:

 70

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 10

 För LITET, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 15

 För STORT, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 12

 För LITET, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 13

 För LITET, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 14

 Grattis, du har gissat rätt!

Har man efter ett tag ingen lust att gissa vidare och vill avsluta, kan man mata in 0.

Man får då reda på programmets hemliga slumptal vid just den aktuella körningen:

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 0

 Avbrott: Programmets hemliga tal var 20

Till skillnad från OCH/ELLER som alltid har två operander, har NEGATIONEN en-

dast en operand, t.ex. p. Negationen sätts framför den: !p. Sanningsvärdet vänds

om: sant blir falskt och falskt blir sant. Därför har ! följande enkla sanningstabell:

 p ! p

true false

false true

I programmet GuessNEG är p i följande situation villkoret guessedNo == sec-

retNo som först negeras och sedan tilldelas den logiska variabeln wrongGuess:

bool wrongGuess;

...

do

{
 ...

 wrongGuess = !(guessedNo == secretNo);

 ...

} while (wrongGuess);

true eller false

 71

Variabeln wrongGuess deklareras till datatypen bool. I do-satsen tilldelas den det

logiska uttrycket !(guessedNo == secretNo), närmare bestämt uttryckets san-

ningsvärde. wrongGuess är sant när guessedNo inte är lika med secretNo dvs

när man gissat fel och då fortsätter do-loopen. wrongGuess är falskt när gue-

ssedNo är lika med secretNo dvs när man gissat rätt och då stoppas do-loopen.

Logiska uttryck

Ett logiskt uttryck är en kombination av enkla villkor, logiska variabler, de logiska

konstanterna true och false, logiska operatorer och vanliga parenteser som till

slut, när det hela evalueras, returnerar ett sanningsvärde. Exempel på logiska

uttryck är sammansatta villkor. Även !(guessedNo == secretNo) är ett logiskt

uttryck vars värde är sant om guessedNo inte är lika med secretNo, annars

falskt. I satsen på bilden ovan får den logiska variabeln wrongGuess detta värde. I

denna sats är = tilldelningsoperatorn som tilldelar värdet true eller false till

variabeln wrongGuess, medan == är en jämförelseoperator som returnerar ett

sanningsvärde, dvs bestämmer om värdet inom parentesen blir true eller false.

Observera även skillnaden mellan utropstecknet som förekommer i jämförelse-

operatorn != och utropstecknet ! som logisk operator. Jämförelseoperatorn != står

som ett dubbeltecken (utan mellanslag) mellan två aritmetiska uttryck, jämför

uttryckens talvärden och returnerar ett sanningsvärde. Den logiska operatorn !

skrivs framför ett logiskt uttryck och returnerar uttryckets omvända sanningsvärde.

Dubbel negation

I villkoret till if-satsen som följer do-satsen skrivs negationsoperatorn ! framför

den logiska variabeln wrongGuess för att negera den:

if (!wrongGuess)

{ ...

Nu sätter vi in det logiska uttryck som via satsen wrongGuess = !(guessedNo ==

secretNo); hade tilldelats wrongGuess, i if-satsens villkor:

if (!(!(guessedNo == secretNo)))
{ ...

Därmed träffar nu två negationer på varandra som enligt negationens sannings-

tabell tar ut dvs neutraliserar varandra. Dubbel negation av ett sanningsvärde re-

producerar sanningsvärdet vare sig det är true eller false, i symbolisk form

!(!p) = p, vilket är en allmän logisk lag som gäller för alla utsagor p. Man kan

också säga: NEGATIONen är som operator sin egen invers dvs sin egen motsatt

operator. Löser vi upp den dubbla negationen ovan enligt denna lag så avslöjas if-

villkorets logiska innebörd:

if (guessedNo == secretNo)
{ ...

 72

Dvs om spelets användare gissar rätt kommer if-satsens kropp att utföras vilket

innebär att ”Grattis”-meddelandet skrivs ut. Detta åstadkommer man i programmet

GuessNEG genom att negera den logiska variabeln GissaFel – samma variabel

som i do-loopens villkor används i positiv (icke-negerad) form för att avsluta den.

Men, kan man undra, kommer ”Grattis”-meddelandet inte i alla fall att skrivas ut

även utan något if-huvud? Detta speciellt med tanke på att do-loopen endast

avslutas när man gissat rätt och turen automatiskt kommer till ”Grattis”-meddelan-

det om man skriver det efter do utan if. Resonemanget vore korrekt om det i

loopen inte fanns möjligheten till att avsluta med inmatning av 0 och därmed bryta

loopen. I ett sådant fall ska nämligen if-villkoret förhindra att ”Grattis”-meddelan-

det skrivs ut efter att man avbrutit spelet och redan fått ”Avbrott”-meddelandet

samtidigt som programmets hemliga tal avslöjats.

Är användningen av NEGATION överhuvud taget inte onödigt? Svaret hänger ihop

med hela strukturen i programmet GuessNEG: En enda logisk variabel som initie-

ras till ett logiskt uttryck ska styra både do-loopen som tillåter flera spelomgånger

och if-satsen som skriver ut ”Grattis”-meddelandet. Men eftersom do ska fortsätta

när man gissat fel, medan if ska utföras när man gissat rätt, alltså tvärt om, kan

man åstadkomma en klar logisk struktur om man använder en och samma logisk

variabel i båda och negerar den antingen i do- eller i if-villkoret – en teknik som

kan användas i andra problem som har samma logiska struktur. Vi kommer att göra

det i en programserie i slutet av detta kapitel där NEGATIONen i kombination med

de andra logiska operatorerna OCH och ELLER tillämpas på verifiering av lösen-

ord.

 73

2.4 Programserien Testa lösenord

Här inleds programserien Testa lösenord med ett exempel som tillämpar våra

kunskaper om loopar och logik på verifiering av lösenord. Vi börjar först med ett

enkelt test av endast ett lösenord (programmet Passwd) och kommer sedan att ut-

vecklas till att mata in lösenord även om Caps Lock-tangenten är påslagen (pro-

grammet PasswdCaps). När man tillåter påslagen Caps Lock-tangent gäller det

att verifiera två lösenord. Men först det enkla testet:

// Passwd.cs

// Enkelt test av endast ett lösenord

using System;

class Passwd

{
 static void Main()

 {
 String input;

 bool wrongPasswd;

 do

 {
 Console.Write("\n\tSkriv ditt lösenord:\t");

 input = Console.ReadLine();

 wrongPasswd = !input.Equals("hemligt");

 if (wrongPasswd)

 Console.WriteLine("\n\tFel lösenord. " +

 "Försök igen!");

 } while (wrongPasswd);

 Console.WriteLine("\n\tOK, nu är du inloggad!\n");

 }
}

En körning av programmet Passwd ger följande dialog om man vid andra försöket

matar in korrekt lösenord och beaktar att man inte har Caps Lock på, annars kan

det bli ännu fler inloggningsförsök.

 Skriv ditt lösenord: HEMLIGT

 Fel lösenord. Försök igen!

 Skriv ditt lösenord: hemligt

 OK, nu är du inloggad!

Jämförelsen mellan strängar är nämligen alltid case sensitive eftersom den görs

tecken för tecken varvid tecknens ASCII-koder jämförs med varandra. Och versaler

 74

har ju andra ASCII-koder än gemener. Därför kommer inte heller inmatningen av

Hemligt leda till lyckad inloggning.

Logiken i Passwd består av den logiska variabeln wrongPasswd som initieras till

det logiska uttrycket !input.Equals("hemligt") och styr både do-loopen och

if-satsen som ingår i den. do-loopen ser till att dialogen mellan program och an-

vändare fortsätter så länge wrongPasswd är true dvs så länge man matar in fel-

aktigt lösenord, någon sträng som är skild från hemligt. Strängen läses in och

lagras i String-variabeln input. Jämförelsen mellan den inlästa strängen och lö-

senordet hemligt görs endast en gång i det logiska uttryck vars sanningsvärde

tilldelas wrongPasswd som används både i do-loopens och if-satsens villkor. do-

loopen avslutas om wrongPasswd blir false dvs om strängen hemligt matas in.

Då skriver if-satsen inte ut något pga wrongPasswd:s false-värde, utan använ-

daren får ok-meddelandet som står efter do-loopen innan programmet avslutas.

Man ser fördelen med att använda en och samma logiska variabel med en och sam-

ma initiering både i do- och if-satsen – en teknik som vi redan använt i program-

met GuessNEG (sid 71). Den logiska strukturen i båda programmen är den samma:

En dialog förs vars avslutning beror på en viss (korrekt) inmatning. Ett meddelande

om fortsatt dialog skrivs ut i fall av felaktig inmatning. Detta meddelande måste

placeras inuti loopen. I fall av korrekt inmatning skrivs ut ett annat meddelande

som måste placeras efter loopen.

Metoden Equals()

I programmet Passwd anropas metoden Equals() så här:

input.Equals("hemligt")

för att testa om den inmatade strängen input är identisk med strängen "hem-

ligt". Redan hur Equals() anropas visar att metoden är definierad i klassen

String därför att före punkten står variabeln input som är av typ String.

Datatypen string – med lilla s – som vi använt hittills för strängvariabler, är

endast ett alias för klassen String – med stora S. Metoden Equals() testar två

strängar på likhet och returnerar true om de är lika, annars false. Anropet ovan

returnerar true om variabeln input refererar till en sträng som är identisk med

strängkonstanten "hemligt", annars false. Därför kan anropets returvärde först

negeras med ! och sedan tilldelas bool-variabeln wrongPasswd.

Man kan ju undra varför strängarna inte jämförs med den vanliga likhetsoperatorn

==, så här: input == "hemligt" vilket är enklare än att anropa metoden

Equals(). I C# går det bra att även skriva så. I själva verket har jämförelse-

operatorn == i C# när den tillämpas på datatypen String, betydelsen ”anrop av

metoden Equals()” som jämför strängarnas innehåll och inte deras referenser.

Med andra ord är operatorn == ett alias för metoden Equals(). Både variabeln

input och konstanten "hemligt" är strängt taget referenser dvs adresser till ob-

jekt av klassen String. Men både == och Equals() jämför objekten. Därför

spelar det i C# ingen roll – till skillnad från Java – om vi jämför strängar med ==

 75

eller Equals(). Vi kommer dock i fortsättningen att föredra metodnotationen

Equals().

Kombination av NEGATION, OCH, ELLER

När man loggar in på sitt konto på datorn, måste man se upp att Caps Lock inte är

aktiverad, annars blir lösenordet felaktigt och man kan inte komma in. Det beror på

att i de flesta operativsystem lösenord (till skillnad från användarnamn) är case

sensitive. Vill man från systemsidan slippa Caps Lock-problematiken och under-

lätta inloggningen genom att tillåta även lösenord i versaler, måste ett program

ingå i operativsystemet som testar lösenordet både med små och stora bokstäver.

Ur säkerhetssynpunkt behöver detta inte vara något problem. När en användare

känner till sitt lösenord spelar det väl ingen roll om han/hon matar in det med

gemener eller versaler. En liknande frågeställning kan förekomma i andra tillämp-

ningar, där både ja och Ja eller nej och Nej skall tillåtas som svar på en fråga om

fortsatt dialog med programmet. Följande program löser Caps Lock-problema-

tiken på två olika, men logiskt likvärdiga sätt:

// PasswdCaps.cs

// Användaren skall kunna mata in lösenord i versal eller

// gemener. Lösning med negerade delvillkor kombinerade med

// OCH. Alternativt: Negation på det hela sammansatta ELLER-

// villkoret

using System;

class PasswdCaps

{
 static void Main()

 {
 String input; // Lokala variabler

 bool wrongPasswd; // i Main()

 do

 {
 Console.Write("\n\tSkriv ditt lösenord:\t");

 input = Console.ReadLine();

 wrongPasswd = !input.Equals("hemligt") &&

 !input.Equals("HEMLIGT");

// wrongPasswd = !(input.Equals("hemligt") || // Alter-

// input.Equals("HEMLIGT")); // nativt

 if (wrongPasswd)

 Console.WriteLine("\n\tFel lösenord. " +

 "Försök igen!");

 } while (wrongPasswd);

 Console.WriteLine("\n\tOK, nu är du inloggad!\n");

 }
}

En körning med inmatningen HEMLIGT i versaler ger lyckad inloggning:

 76

 Skriv ditt lösenord: HEMLIGT

 OK, nu är du inloggad!

Samma resultat skulle förstås ge en körning med inmatningen hemligt i gemener.

Alla andra inmatningar kommer att misslyckas. Detta beror på do-loopens logik,

närmare bestämt på dess avslutningsvillkor wrongPasswd: Så länge det är sant ska

loopen fortsätta. Den logiska variabeln wrongPasswd i sin tur har värdet true om

det logiska uttryck som den är tilldelad till, nämligen:

!input.Equals("hemligt") && !input.Equals("HEMLIGT")

har värdet true. Detta sammansatta uttryck är i sin tur sant endast om båda delut-

trycken är sanna dvs om input är varken lika med hemligt eller HEMLIGT.

Är däremot den inmatade strängen input lika med hemligt eller HEMLIGT, ska

loopen stoppas. Då kommer efter do-satsen ok-meddelandet att skrivas ut och

programmet avslutas. Viktigt för att få det hela att fungera korrekt är också att if-

satsen i loopen som skriver ut meddelandet om misslyckat inloggningsförsök har

samma logiska variabeln wrongPasswd med samma värde som villkor.

I uttrycket ovan har vi: !p && !q där p = input.Equals("hemligt") och
 q = input.Equals("HEMLIGT")

Men det finns i logiken en lag som säger att uttrycket ovan dvs det sammansatta

OCH-uttrycket bildat av de negerade delutsagorna, är ekvivalent (logiskt likvärdigt)

med det negerade sammansatta ELLER-uttrycket:

!p && !q = !(p || q)

Ett vardagligt exempel på denna lag är: ”Jag dricker kaffe utan socker OCH utan

mjölk.” betyder samma sak som ”Jag dricker kaffe varken med socker ELLER med

mjölk.”. Lagen kallas efter den brittiske matematikern De Morgan. Formuleringen

ovan är De Morgans första lag. Enligt denna lag kan vi alternativt till uttrycket i

programmet PasswdCaps även tilldela följande uttryck till den logiska variabeln

wrongPasswd:

!(input.Equals("hemligt") || input.Equals("HEMLIGT"))

Detta är i den aktuella versionen av programmet PasswdCaps borkommenterat.

Alternativet innebär: Om det inte är sant att den inmatade strängen input är lika

med hemligt eller HEMLIGT, ska do-loopen fortsätta dvs inloggningsförsöket är

misslyckat och användaren måste göra om försöket. Är däremot input lika med

hemligt eller HEMLIGT, ska dialogen stoppas. Då kommer ok-meddelandet att

skrivas ut och programmet avslutas. Observera att negationsoperatorn i detta

alternativ måste hållas utanför det sammansatta ELLER-villkoret. Vart negationen

ska sättas, är intuitivt inte självklart, utan framgår av De Morgans lag.

 77

Den logiska OCH-operatorn && ger en intuitivt bättre förståelig version och är

identisk med ELLER-alternativet. Båda versioner tillåter inloggning med lösenord

oavsett om det sker med gemener eller versaler.

De Morgans lagar

Så här kan vi sammanfatta De Morgans lagar:

För en formellt logisk formulering av dessa lagar och deras framställning med

mängder se övn 5.3 på sid 83.

Beviset

Formellt är två logiska uttryck ”lika” med varandra om deras sanningstabeller är

identiska. Man säger då att de är ekvivalenta, dvs logiskt likvärdiga. Man kan

också säga att det handlar om de logiska sanningsvärdenas likhet. I praktiken bety-

der det att båda ledens uttryck har samma sanningstabell. Den första av De Mor-

gans lagar kan man bevisa genom att manuellt gå igenom de enskilda operatorerna

&&, || och !:s respektive sanningstabeller och sätta ihop sedan sanningsvärdena:

 p q !p && !q !(p || q)

--

true true false false

true false false false

false true false false

false false true true

Man ser att båda uttryckens sanningstabeller är identiska. Mönstret som blir tydligt

är följande: Appliceras negationen på det sammansatta uttrycket och sätts framför

parentesen istället för att appliceras på varje enskild operand, måste && bytas ut

mot ||. Analogt gäller den andra av De Morgans lagar:

!p || !q = !(p && q)

Ävenn denna ekvivalens kan visas på samma sätt som den första: båda uttryckens

sanningstabeller är identiska:

 p q !p || !q !(p && q)

--

true true false false

true false true true

false true true true

false false true true

Därmed har vi bevisat De Morgans lagar. Gå gärna igenom de enskilda operatorer-

na &&, || och !:s respektive sanningstabeller. Sätt ihop sedan sanningsvärdena.

!p && !q = !(p || q)

!p || !q = !(p && q)

 78

| |

2.5 Mängdlära och logik

Vad har mängder med logik att göra? Och varför blandar vi in ett nytt begrepp i

diskussionen om logik? Det enkla svaret är just nu: allt vi t.ex. sagt i förra avsnitt

om De Morgans lagar kan man lika bra – kanske t.o.m. bättre – formulera, förklara

och förstå med mängder. Så kan man göra även med andra logiska lagar. Logiken

är abstrakt, men mängder kan man föreställa sig därför att de består av konkreta

saker och ting. Vi kan med hjälp av mängder visualisera logiken, vilket inte bara

ökar förståelsen utan också skapar – vi kommer att se det – en vacker analogi som

har ett värde i sig. Men även rent praktiskt kommer vi att ha nytta av mängdlärans

begrepp senare när vi behandlar databaser (sid 157). Att vi tar upp temat just nu be-

ror på kopplingen med logiken som behandlats i detta avsnitt.

Mängdoperationer och deras logik

En väldefinierad samling av saker och ting (föremål, objekt) kallas för mängd. En

mängd kallas väldefinierad, om man alltid kan avgöra om något element tillhör

mängden eller ej. Vi betraktar endast väldefinierade mängder och utesluter icke-

väldefinierade mängder. För, om vi inte gör det hamnar vi förr eller senare i svårig-

heter av den typ som man gjorde i början av 1900-talet. Förenklat kan man illustre-

ra dessa svårigheter med Russells paradox (antinomi, motsägelse). Så i fortsättnin-

gen förutsätter vi att alla mängder vi pratar om, är väldefinierade, vilket betyder att

man för alla element i en mängd kan avgöra om elementet tillhör mängden eller ej.

Vi inför ett antal symboler för mängder och mängdoperationer:

Element av en mängd

 Låt mängden A bestå av ett antal element.

 Mängden A

 Att elementet x tillhör mängden A

 uttrycks med: x ε A

  x

 y tillhör inte A: y ε A

  y

Det lilla tecknet ε kallas epsilon i det grekiska alfabetet och står för element.

 Russells paradox: Att det även finns icke-väldefinierade mängder har Bertrand Russell visat med sin

berömda antinomi om barberaren i en by (1903): En liten by har endast en barberare. Byborna delas i två

mängder: 1. Alla som inte rakar sig själva och därför rakas av barberaren. 2. Alla som rakar sig själva

och inte rakas av barberaren. Frågan är: Vem rakar barberaren? Denna fråga leder till en oupplösbar

motsägelse: Om han rakar sig själv, tillhör han mängden 2, men då får han inte raka sig själv. Om han

inte rakar sig själv, tillhör han mängden 1, men då måste han raka sig själv. Det kan inte avgöras vilken

mängd han tillhör. Därför skapar indelningen av byborna i två mängder enligt ovan inga väldefinierade

mängder. Den logiska motsägelsen löstes senare av Russell, Wittgenstein och andra filosofer.

 79

Snittet motsvarar den logiska operatorn OCH.

Unionen av två mängder

Man slår ihop (sammanfogar, förenar) två mängder:

 A B

  x

Resultatet är unionen av mängderna A och B och betecknas med: A U B

 x ε A U B om x ε A ELLER x ε B

 Unionen motsvarar den logiska operatorn ELLER.

Snittet av två mängder

 A B

  x

Resultatet är snittet (skärningsmängden, det gemensamma) av mängderna A och B

och betecknas med:

 A ∩ B

 x ε A ∩ B om x ε A OCH x ε B

 80

|

Komplementet motsvarar den logiska operatorn NEGATION.

|

Komplementet av en mängd

 A A

  x

Resultatet är komplementmängden av mängden A och betecknas med: A

 x ε A om x ε A

Differensen av två mängder

 A B

  x

Resultatet är mängddifferensen av mängderna A och B och betecknas med:

 A \ B

 x ε A \ B om x ε A OCH x ε B

 81

Den tomma mängden

En mängd som inte har något element betecknas med den tomma mängden och

har symbolen Ø . Ex.:

 A B

Två mängder utan något gemensamt element kallas disjunkta.

Snittet av disjunkta mängder är den tomma mängden: A ∩ B = Ø

 82

 83

Övningar till kap 2

2.1 Skriv ett program som med hjälp av en nästlad for-sats skriver ut en rektan-

gel fylld med stjärnor (*) till konsolen, bestående av 9 rader och 20 kolum-

ner.

Numrera raderna och ko-

lumnerna utan att förstöra

helhetsbilden. Denna upp-

gift är knappast någon öv-

ning i logik, utan snarare i

nästlade loopar. Men den

förbereder de följande två

övningar i sammansatta

villkor och logiska opera-

torer.

2.2 Selektera (skriv ut) från den stjärnfyllda rektangeln från övn 2.1 endast den

5:e raden och den 7:e ko-

lumnen så att det visas ett

kors. Lägg in i den inre

for-slingan som skriver ut

en rad, en if-else-sats

som i varje varv skriver ut

en stjärna om ett samman-

satt villkor med ELLER är

uppfyllt, annars ett mellan-

slag. Hur blir det om du

byter ut ELLER mot OCH?

2.3 Omvandla korset från övn

2.2 till dess negativ, dvs

skriv ut alla stjärnor från

övn 2.1 utom den 5:e raden

och den 7:e kolumnen.

Använd den logiska opera-

torn NEGATION. Negera

en gång hela det samman-

satta ELLER-villkoret från

övn 2.2 och en gång det

sammansatta villkorets delvillkor. I båda fall borde du få samma resultat.

 84

2.4 Skriv ett program som läser in tre tal, hittar och skriver ut det största av

dem. Lös problemet genom att använda tre enkla if-satser med samman-

satta villkor och den logiska operatorn &&. På så sätt kan du i varje if-sats

jämföra ett tal med de två andra. Varför måste variabeln som lagrar det

största talet, initieras vid deklarationen?

2.5 Skriv ett program som skriver ut sanningsvärdet till det enkla villkoret a <

10 där a är en heltalsvariabel vars värde läses in. Testa ditt program genom

att mata in t.ex. 9, 10 resp. 11.

2.6 Bestäm sanningsvärden hos de följande logiska uttrycken, först med papper

och penna, sedan i ett C#-program:

 a) (8 < 7) && (true || false)

 b) !(3 < 3.01) || (!(0==0) && true)

 c) (true || !false) && !(!(4*5==1) && false)

2.7 Följande enkel version av Gissa tal-spelet tillåter endast en spelomgång

(utan loop). För att koda ett trevägsval nästlar programmet en if-else -sats

i en annan if-else-sats:

// GuessIfElse.cs

// Flervägsval med nästlad if-else-sats

using System;

class GuessIfElse

{
 static void Main()

 {
 Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");

 int guessedNo = int.Parse(Console.ReadLine());

 if (guessedNo <= 17)

 if (guessedNo == 17)
 Console.WriteLine("\n\tGrattis, du har " +

 "gissat rätt!\n");

 else

 Console.WriteLine("\n\tFör litet!\n");

 else

 Console.WriteLine("\n\tFör stort!\n");

 }
}

Modifiera programmet ovan genom att använda logiska operatorer och

sammansatta villkor i syftet att förenkla nästlingen. Det nya programmet ska

göra samma sak som GuessIfElse. Bedöm i slutet själv om det har blivit

mer förståelig kod.

 85

2.8 Modifiera programmet PasswdCaps (sid 75) genom att lägga in kod som be-

gränsar antalet inloggningsförsök till t.ex. 3. Överskrider man denna gräns

ska programmet avslutas efter att ha skrivit ut ett meddelande av typ Du har

försökt 3 gånger. Nu avslutas programmet!

Tips: Använd en if-sats som avslutar programmet genom att bryta loo-

pen med break.

2.9 Operationer med mängder kan illustreras grafiskt. Hur man gör det kan du

läsa i avsnitt 2.5 Mängdlära och logik på sid 78. Diagrammen du ser där kal-

las för Venndiagram efter den brittiske logikern John Venn (1834-1923).

Med Venndiagram kan man illustrera även logiska lagar när de är skrivna i

mängdnotation, där en mängd motsvarar en utsaga.

De Morgans lagar som togs upp i kap 2 (sid 77) kan då formuleras så här:

¬ (p OCH q) ↔ ¬ p ELLER ¬ q

¬ (p ELLER q) ↔ ¬ p OCH ¬ q

där p och q är utsagor, ¬ är symbolen för logisk negation och ↔ symbolen

för logisk ekvivalens. Sä här kan man skriva om dem till samband mellan

mängder:

Anta att A och B är mängder och är symbolen för komplementmängden,

∩ för snittet och U för unionen av två mängder (se definitionerna i avsnitt

2.5 Mängdlära och logik på sid 78. Då kan De Morgans lagar skrivas i

mängdnotation så här:

 (A ∩ B) = (A) U (B)

 (A U B) = (A) ∩ (B)

Illustrera De Morgans lagar i mängdnotation med Venndiagram.

 86

Kapitel 3

Datastrukturer

och abstrakta datatyper

 Ämne Sida Program

3.1 Vad är objektorienterad programmering? 87

3.2 Objektorienterad design med UML 93

­ Projekt Lönespecifikation 93

­ Kundens kravspecifikation 93

­ UML design och modellering i fyra steg 93

3.3 Array som objekt 97 ArrayObj

- foreach-satsen 101

3.4 Hantering av array med referens 104 ArrayRef

3.5 Array av referenser 106 ArrayOfRef

3.6 Array som parameter i metoder 110 ArrayParam

3.7 Hantering av slumptal i C# 114 DoRand

- Array av slumptal 115 RandArray

3.8 Sökning och sortering 117 Search

- Bubbelsortering 120 Bubble

3.9 Generiska metoder 123 G_Bubble

3.10 Listor 128 Lista

- Klassen RandList 129 RandList

- foreach i listor 130 Print

 Övningar till kapitel 3 132

 87

3.1 Vad är objektorienterad programmering?

En given definition på programmering är problemlösning med hjälp av datorn. Om

man då beskriver problemets lösning i form av en algoritm kan man säga Program

= algoritm + data. Denna definition ställdes upp av Niklaus Wirth på 60-talet och

återspeglar den procedurala synen på programmering. Fokuset ligger på algoritmen

dvs att inte bara hitta utan även beskriva tillvägagångssättet (proceduren) för att

lösa ett problem. Sedan återstår bara att koda denna beskrivning. En annan defini-

tion som kom upp på 80-talet och återspeglar den objektorienterade synen på

programmering är:

Program = Modell av verkligheten

Om man i formeln Program = algoritm + data lägger betoningen på data istället

för på algoritmen och inte längre betraktar data som ett slags bihang till algoritmen

utan som objekt kommer man till objektorienterad programmering. Denna nya

programmeringsfilosofi genomsyr alla våra program, eftersom C# med alla sina

fördefinierade biblioteksprogram är i högsta grad objektorienterade.

Paradigmskifte

Det som i programmeringshistorien gjorde att man behövde objektorienterad pro-

grammering var den växande komplexiteten hos program under 70-talet. Program-

mens storlek var avgörande för den växande komplexiteten. Man insåg att det inte

längre räckte till att skriva och testa program som fungerade just då. Det var

nödvändigt att med rimliga kostnader kunna även underhålla stora program, förnya

och vidareutveckla dem så att de fungerade även i flera år och att de framför allt

kunde anpassas till nyuppkomna situationer utan oöverkomliga svårigheter. Det i

sin tur krävde att man redan i designstadiet behövde ett annorlunda upplägg. Foku-

set förskjöts från problemlösning till modellering av verkligheten. Objektorienterad

design kom in i bilden. Allt detta var endast med procedural programmering inte

längre möjligt. Ett s.k. paradigmskifte hade blivit nödvändigt, dvs en ändring av

helhetssynen på programmering.

Objektorienterad programmering syftar åt att efterlikna verkligheten. Man vill avbil-

da den reala världen – åtminstone den del som tillåter datorisering – och konstruera

en modell av den i sina datorprogram för att kunna simulera verkligheten genom att

testa modellen. För att undvika filosofiska diskussioner kan vi anta att den reala värl-

den består kort sagt av objekt. Världen kring oss är full med sådana objekt: Männi-

skor, byggnader, bilar, tåg, flygplan, träd, möbler, böcker, butiker, skolor, bibliotek,

kontor, anställda, kunder, varor, fakturor, order, bokningar, kurser osv. Objekten kan

vara verkliga eller virtuella. Ett datorprogram försöker att beskriva dessa objekt. Låt

oss precisera detta:

 88

Objekt, klass och metod

Ett objekt har vissa egenskaper. Generellt kan man säga att ett objekt är summan av

alla sina egenskaper. Ett annat ord för egenskap är attribut. Ett objekt består av alla

sina attribut. Attributen tillhör objektet. T.ex. har objektet bil som attribut fabrikat,

modell, färg, årsmodell, antal körda mil, antal hästkrafter, maximala hastigheten, an-

tal och storlek på cylindrar i motorn osv. Alla dessa data ger svar på frågan ”Vad är

det för bil?”. Men bilden vore ofullständig om vi nöjde oss med dessa intressanta,

men statiska data. Vi vill också veta vad man kan göra med bilen. Ett objekt kan i

regel även utföra vissa aktioner eller operationer. I den objektorienterade program-

meringens terminologi kallas de för metoder. Typiska metoder för en bil är t.ex. att

köra fram, att backa, att accelerera, att bromsa, att parkera, att byta olja osv. Den

fullständiga definitionen på en bil som objekt vore alltså att ange både dess attribut

och metoder. Bilfabrikanten måste förse bilen med alla dessa färdigheter för att kun-

na sälja den. Därför går man i bilfabriken efter en plan när man tillverkar bilen. I den

objektorienterade programmeringens terminologi kallas denna plan för bilens klass.

När vi skriver ett program måste vi först formulera klassen Bil för att sedan kunna

skapa objekt av den. Klassen skrivs bara en gång, medan objekt kan skapas enligt

klassens beskrivning i obegränsat antal. I klassen måste vi ta upp alla attribut och

metoder som är relevanta eller av någon anledning önskvärda för en bil. Den praktis-

ka användningen avgör från fall till fall vad som är relevant eller önskvärt.

Vad är skillnaden mellan objekt och klass? Om vi byter ut bilar mot pepparkakor

kan man säga att pepparkaksformen är klassen och själva pepparkakorna är objek-

ten. Klassen är alltså en slags mall, en förskrift för produktion av objekt: En enda

pepparkaksform kan producera tusentals pepparkaksgubbar. Gubbarna kan skiljas

från varandra i vissa detaljer, t.ex. materialet, smaken osv. Man kan t.o.m. måla

dem i olika färger eller modifiera på annat sätt efteråt. De förblir pepparkaksgubbar

av den ursprungliga formen. I formen ingår det som är gemensamt hos alla peppar-

kaksgubbar. Man har, när man byggde formen, bortsett från oväsentliga skillnader

och tagit hänsyn endast till det väsentliga, det gemensamma hos alla pepparkakor.

Att bortse från skillnader och att bibehålla det gemensamma hos olika verkliga

objekt, är en abstraktion (abstrahera betyder på latin: att ta bort, att dra av). Man tar

bort allt som skiljer saker och ting av samma kategori eller typ och kommer på det

viset till själva kategorin. Abstraktion leder till begreppsbildning, till klassificering

eller kategorisering av den reala världen. Ett växande barn går igenom samma ab-

straktionsprocess, ser först sina föräldrar (objekt), abstraherar sedan via erfarenhet så

småningom till begreppet människa (klassen) och inser att sina föräldrar är två kon-

kreta exemplar av den abstrakta klassen människa. Så gör barnet med alla saker och

ting omkring sig och lär sig vuxenvärldens begreppsapparat. Det abstrakta begreppet

penna (klassen) t.ex. bildas efter att man sett hundratals verkliga pennor (objekt).

Objektorienterad programmering återspeglar denna naturliga tankeprocess från det

konkreta till det abstrakta, från objekt till klass.

 89

Metoder

En metod är en funktionalitet som definieras i en klass. Den talar om vad ett objekt

av denna klass kan göra. Det finns två steg i hantering av metoder: Först definierar

man dem dvs skapar man deras kod i en klass. Sedan anropar dvs aktiverar man

dem i ett objekt av denna klass. Ofta är det första steget redan genomfört av andra,

så vi behöver bara anropa en redan fördefinierad metod. I klassen Bil t.ex. är

metoderna att köra fram, att backa, att accelerera, att bromsa osv. definierade i hu-

vuden på bilkonstruktörerna och i deras konstruktionsritningar och dokumenta-

tioner. Sedan har man tillverkat massor med objekt av klassen Bil i fabriken och

byggt in dessa metoder i alla bilar. Vi behöver bara anropa dem i den bil vi kör.

Den bil vi kör är ett specifikt objekt av klassen Bil. Låt oss kalla det för minVolvo.

Objektet minVolvo har ett antal attribut som t.ex. fabrikat, modell, färg, årsmodell

osv., men också ett antal metoder, bl.a. metoden Kör(). Parenteserna i metodens

namn brukar man skriva för att karakterisera Kör() som en metod och skilja den

från klassens attribut. I C# skriver man ett anrop av metoden Kör() så här:

minVolvo.Kör();

Observera att före punkten står ett objekt, inte klassen. Det är ju den specifika bil

som jag använder just nu som ska köras. Först efter punkten står själva anropet av

metoden kör(). Det här sättet att skriva kallas punktnotation. Metoder måste alltid

anropas med punktnotation, vilket har sin grund i att de endast är deklarerade i

klasser, så att de endast existerar i objekt av en klass. Till skillnad från fristående

funktioner kan metoder varken definieras utanför klasser eller anropas utanför

objekt. I C# finns endast metoder, inga funktioner. Om vi bortser från bilexemplet

kan det i andra sammanhang även förekomma en klass (istället för objekt) före

punkten i anropet av en metod. I så fall är metoden definierad i klassen på ett spe-

ciellt sätt nämligen som en statisk metod, vilket tas upp senare när vi behandlar

metoder i detalj.

En annan variant av metoden Kör() kan anropas på fäljande sätt:

minVolvo.Kör(40);

Det kan t.ex. betyda: Kör bilen med hastigheten 40 km/h. Värdet 40 kallas då en

parameter som skickas till metoden när den anropas. I så fall måste även metoden

Kör() vara definierad så att den har beredskapen att ta emot denna parameter. Så

det kan inte vara samma metod som anropades utan parameter. Det måste vara en

annan variant av den, exakt talat en annan metod med samma namn. Konceptet

kallas överlagring av metoder och innebär två eller flera metoder med samma

namn, men olika parametrar.

Klassdiagram

Låt oss ta som exempel en algoritm som beskriver hur man går upp, duschar, tar på

sig kläderna och åker till jobbet (algoritmen Morgonsyssla i Progr1+, 1.4). Detta är ett

typiskt fall av problemlösning: Det löser problemet hur man tar sig till jobbet. Till-

vägagångssättet och framför allt hur vi beskriver det, är föremål för algoritmer. Men

 90

Person

- firstName

- lastname

- birthDate

+ Present()

+ MorningActivity()

Employee

- hireDate

- workingHour

+ Salary()

+ MorningActivity()

Employee

- firstName

- lastname

- birthDate

- hireDate

- workingHour

+ Salary()

+ Present()

+ MorningActivity()

vem eller vilka gör det, dvs vilka objekt som är involverade i algoritmen och hur man

beskriver dessa objekt, är en annan aspekt på saken. Objektorienterad program-

mering prioriterar objektaspekten framför algoritmaspekten. Den primära frågan är

inte längre vad man gör utan vem man är dvs hur kan personen beskrivas? Hur man

gör för att ta sig till jobbet kommer att ingå som en del i denna beskrivning. Algo-

ritmen Morgonsyssla blir en metod i objektet Person. Det är objektet som utför

metodens instruktioner för att ta sig till jobbet.

Personen kan t.ex. vara en anställd vilket förresten skulle förklara varför han tar sig

till jobbet. I så fall är personen ett objekt av ka-

tegorin eller klassen Employee. Därför definie-

ras en klass som beskriver alla anställda. Perso-

nen i fråga görs till ett objekt, ett exemplar av

denna klass. På så sätt kan koden återanvändas

även för andra anställda. Återanvändning av

kod gör utvecklingsarbetet av programvara ef-

fektivare och är en av den objektorienterade

synens fördelar. I klassen Employee ingår all

typ av information som är relevant för en an-

ställd, det vi kallar för attribut, t.ex. för- och ef-

ternamn, födelse- och anställningsdatum, ar-

betstid osv. Dessutom tar vi upp allt som en an-

ställd kan göra, det vi kallar för metoder, t.ex. att få lön, att presentera sig eller också

att ta sig till jobbet. På så sätt blir algoritmen Morgonsyssla i den objektorienterade

programmeringens terminologi en metod i klassen Employee. Ett verktyg speciellt

för objektorienterade modelleringar är UML

(Unified Modeling Language). Enligt det här

modelleringsspråket skulle klassen Employee be-

skrivas med diagrammet till höger som kallas för

klassdiagram. Där står tecknet – för attribut och

+ för metoder. Andra beteckningar för attribut är

datamedlem eller egenskap. Dessa termer är

synonymer. En klass består av datamedlemmar

och metoder. Klassen Employee t.ex. har fem

datamedlemmar och tre metoder.

Klassens konstruktor

Eftersom klassens datamedlemmar i regel är in-

kapslade (privata) och inte åtkomliga utifrån

klassen – detta gör man bl.a. ur datasäkerhets-

synpunkt – måste programmeraren använda sig

av ett verktyg för att på ett kodat sätt ändå kunna

komma åt dem, läsa och ändra dem osv. Detta

verktyg kallas klassens konstruktor och är en

speciell metod vars namn är identiskt med klas-

sens namn. Den initierar automatiskt klassens

 91

privata datamedlemmar när ett objekt skapas. För enkelhetens skull har vi inte tagit

upp den i klassdiagrammet ovan bland klassens metoder. Konstruktorn har ju endast

programmeringsteknisk karaktär och behandlas i detalj senare.

Arv

I den reala världen som vi vill efterlikna, finns inga isolerade objekt. Alla objekt är

mer eller mindre relaterade till andra objekt. En klok modellering måste dra nytta

av de befintliga relationer mellan objekt för att effektivisera och optimera utveck-

lingsarbetet. En sådan relation är arvrelationen.

Man kan alltid etablera en arvrelation mellan två begrepp om de står i en ”är”-rela-

tion till varandra. I exemplet ovan kan vi konstatera ett en anställd är en person.

Därför kan klassen Employee ärva klassen Person, närmare bestämt ärver klassen

Employee klassen Person:s alla datamedlemmar och metoder. Klassen Person

kallas bas- eller superklass. Klassen Employee kallas härledd eller subklass. Sub-

klassen ärver superklassens alla datamedlemmar och metoder, vilket i praktiken

innebär att klassen Employee tar över all kod som redan finns i klassen Person

och lägger till ny kod som närmare specificerar en anställd. På så sätt slipper man

skriva om kod som redan finns. T.ex. har en person ett för- och efternamn samt ett

födelsedatum. Vid modellering av en anställd ärvs dessa attribut, och man lägger

till de nya attributen hireDate och workingHour som är speciella för en anställd.

Klassdiagrammet ovan (till vänster) visar modellen där arvrelationen ritats med en

pil riktad mot superklassen. Följer man pilens riktning underifrån kan man avläsa

att det är klassen Employee som ärver klassen Person.

Observera att klassen Employee inte har två utan fem attribut därför att den via

arvrelationen även har Person-klassens tre attribut. Samma gäller för metoderna:

Employee-klassen ärver metoden Present() från klassen Person. Modellen

ovan går utifrån att personer presenterar sig på samma sätt som anställda. Sedan

har anställda en löneberäkningsmetod som icke-anställda personer saknar. Men

varför står metoden MorningActivity() i båda klasser? Närmare bestämt: Var-

för förekommer den i Employee-klassen fast den ärver den från superklassen?

Svaret ges av ett annat koncept inom objektorienterad programmering:

Polymorfism

Modellen ovan går utifrån att icke-anställda personer har en annan form av

morgonsyssla än anställda. De kanske inte tar sig till jobbet, i alla fall inte alla,

utan har en annan morgonsyssla. Så vi har här att göra med två olika morgon-

sysslor tillhörande två olika klasser, men med samma namn. För objekt av typ

Person kommer den ena och för objekt av typ Employee kommer den andra att

gälla. Men varför har de samma namn? Vore det inte bättre, för att undvika namn-

konflikt, att ge dem olika namn, när de ändå är olika metoder? Faktiskt inte!

Anledningen till att de har samma namn är följande: För det första blir det ingen

namnkonflikt därför att de tillhör olika typer av objekt. De är inte fristående utan

 92

inkapslade i var sitt objekt som skiljer åt dem. För det andra ska vi inte i onödan

göra utvecklingsarbetet komplicerat genom att hitta på nya namn på metoder som

skiljer sig från varandra endast i detaljer. Ingen människa skulle kunna komma

ihåg så många namn. För det tredje vill vi efterlikna verkligheten där det bara

kryllar av beteckningar som är identiska, men har olika innebörd i olika samman-

hang. Inte heller det vanliga språket har olika namn på dem. Ta följande exempel:

Att bromsa en lastbil görs på ett annat sätt än att bromsa en båt. Det finns ingen

anledning att hitta på ett annat namn för funktionaliteten "att bromsa" hos olika

typer av fordon. Tvärtom, det vore förvirrande att använda olika namn. Man vill ju

helst slippa att tänka på de tekniska skillnaderna mellan olika typer av fordon när

man pratar om bromsning. En och samma funktionalitet är realiserad på olika sätt.

Med andra ord, man gör "samma sak", fast på annorlunda sätt. Objektorienterad

programmering tar över detta koncept genom att välja ett och samma namn för

olika metoder. När metoderna dessutom finns i klasser som ärver varandra kallas

konceptet för polymorfism.

”Poly” betyder många och ”morf” är form eller gestalt på latin och antik grekiska.

Polymorfism handlar om en sak som har många olika gestalter, t.ex. ett ord som

har många olika betydelser. En metod beskriver alltid någon funktionalitet. Poly-

morfism förändrar denna funktionalitet genom att definiera en metod i super-

klassen och definiera om innehållet, men behålla namnet i subklassen.

Objektorienterad programmering har kommit till för att förverkliga programme-

ringens gamla önskedrömmar om modularisering, återanvändning av kod och

strukturering av program. Allt för att kunna underhålla stora program, förnya och

vidareutveckla dem, så att de fungerar över längre tid och snabbt kan anpassas till

nyuppkomna situationer.

De sista två har vi försökt att introducera här utan att behöva skriva kod. För att

förstå inkapsling behöver vi mer detaljerade kunskaper om objektorientering samt

skriva lite kod, vilket vi gör i de kommande avsnitten. Sedan ska vi återkomma till

arv och polymorfism, för att förse aven dem med kod.

Polymorfism modifierar helt eller delvis funktionaliteten hos metoder

med samma namn som förekommer i en arvhierarki.

Objektorienterad programmering bygger på tre hörnstenar:

 Inkapsling

 Arv

 Polymorfism

 93

”Vi vill datorisera lönespecifikationen till våra timanställda. Varje vecka får vi

timrapporter över deras arbetstider i timmar och minuter. Ett program behövs

som läser in en timanställds namn, timlön och arbetstider för varje veckodag.

Sedan ska programmet summera arbetstiderna, beräkna veckolönen samt visa

både veckans totala lön och arbetstid i timmar och minuter. En kontrollräkning

ska bekräfta resultatet. Lönespecifikationen ska skrivas ut till en fil, så att den

kan skickas till våra medarbetare.”

Kundens kravspecifikation

3.2 Objektorienterad design med UML

Nu ska vi använda det vi lärt oss om den objektorienterade programmeringens

grundläggande principer på en verklig situation. Vi vill diskutera design- och mo-

delleringsfrågor som, speciellt i större projekt, måste besvaras innan man börjar

koda. Ska det slutliga programmet vara objektorienterat måste redan modellen vara

det. Koden måste baseras på en objektorienterad modell som fundament. Det hela

går ut på att bygga en modell av en verklig situation, i enlighet med den objekt-

orienterade synen på program som nämnts tidigare:

Program = Modell av verkligheten

Vi vill realisera denna syn genom att genomföra följande praktiskt uppdrag som

ställs till oss av en kund. Så här formulerar kunden sin kravspecifikation:

Projekt Lönespecifikation

Vi döper uppdraget till projekt Lönespecifikation och bestämmer oss för att lösa

problemet med ett objektorienterat program. Men hur ska vi lägga upp en objekt-

orienterad lösning till detta projekt? Det finns inga fasta tillvägagångssätt som är

allmängiltiga, inga generella recept som kan tillämpas i alla situationer. Ändå vill

vi försöka att visa en steg för steg-algoritm som är någorlunda användbar i de flesta

fallen. Vi ska först bygga en objektorienterad modell av projektet och sedan imple-

mentera modellen dvs förverkliga den i C# kod.

UML design och modellering i fyra steg

Steg 1: Förstå problemet

Läs kravspecifikationen (rutan ovan) flera gånger och försök att få en så exakt

uppfattning som möjligt av kundens uppdrag. Det låter som en självklarhet. Men

en korrekt uppfattning av problemställningen är faktiskt avgörande. Med andra ord

för att lösa problemet måste vi förstå det. För att förstå problemet, måste vi vara

förtrogna med den praktiska situationen och ha en någorlunda god insikt i pro-

blemets viktigaste aspekter utan att därför behöva vara expert i ämnet. Glöm för ett

tag programmeringen och sätt dig mentalt in i en annan roll – i en ansvarige för ett

 94

Time

- hour: int

- min: int

+ Sum(): Time

+ ToDecimal(): double

Employee

- name: String

- hourlyWage: double

- weeklyWage: double

- control: double

- weeklyWTime: Time

- dailyWorkTime: Time[]

+ Salary(): void

+ Output(): String

företags verksamhet som vill betala ut löner till sina timanställda. OBS! Det här är

en attitydfråga – svårare än programmeringen.

Steg 2: Identifiera problemets nyckelbegrepp

De kommer vid implementeringen att bli programmets klasser. I databasmodelle-

ring används begreppet Entitet. Det är något viktigt för verksamheten – reellt eller

virtuellt – som man kommer att behöva lagra information om. Närmare bestämt

handlar det om en kategori av saker och ting som är relevanta för verksamheten.

Det är inte alltid enkelt att avgöra vad som är relevant. Och därför är det möjligt att

ställa upp olika modeller av en och samma situation. Vilka nyckelbegrepp finns det

i projektet Lönespecifikation? Vi bestämmer oss redan för en viss modell när vi

t.ex. konstaterar att i händelsernas centrum står en timanställd som vi kommer att

behöva lagra information om. Därför väljer vi nyckelbegreppen anställd och tid.

Steg 3: Identifiera datamedlemmar till varje klass

Har man hittat ett nyckelbegrepp så är nästa fråga: Vad har detta nyckelbegrepp för

egenskaper eller attribut. Ett begrepp kan ofta definieras som mängden av alla sina

egenskaper. Detta kommer att avgöra vilka datamedlemmar vi kommer att ha i den

klass som definierar begreppet. Vad är det som utgör en anställd? Läser man pro-

jektets beskrivning noga hittar man en anställds namn, timlön och arbetstid. Ett

annat sätt att hitta attribut till ett nyckelbegrepp är den s.k. har-relationen.

”Har”-relationen

För att konstatera om namn, timlön och arbetstid är en anställds attribut, är det ofta

nyttigt att testa den s.k. har-relationen: Har en anställd ett namn, en timlön och en

arbetstid? Svaret är ja. Dessutom måste vi ha en anställds arbetstider som dag-

arbetstider. Så, vi kan redan definiera namn, timlön (hourlyWage) och dagarbets-

tider (dailyWorkTime) som datamedlemmar till klassen anställd. Projektets krav på

att beräkna ”veckans totala lön och arbetstid i timmar och minuter” samt kon-

trollräkningen leder till att även inkludera veckolön (weeklyWage), kontroll och

veckoarbetstid (weeklyWTime). Vi ställer upp följande klassdiagram:

 95

Enligt standarden UML (Unified Modeling Language) sätts i klassdiagrammen

ovan symbolen + framför metoderna medan symbolen – skrivs framför datamed-

lemmarna. Dessutom är det standard i klassdiagrammen att ange datamedlemmar-

nas datatyper samt metodernas returtyper inkl. void för metod utan returvärde.

Anmärkningsvärt i diagrammen är att klassen Time förekommer som returtyp till

metoden Sum() och även i arrayform Time[] som datatyp till datamedlemmen

dailyWorkTime. Time[] är en array av referenser till Time-objekt.

Steg 4: Att identifiera metoder till varje klass

Nästa fråga vi ställer till nyckelbegreppet anställd är: Vilka operationer är relevan-

ta för en anställd? Svaret på denna fråga kommer att avgöra vilka metoder vi kom-

mer att definiera i denna klass. En blick på uppgiftens beskrivning visar att det är

löneberäkningen som är intressant för en anställd. Så, vi kommer att ta upp en me-

tod i modellen, säg Salary(), som beräknar en anställds veckolön. Kravet på ut-

skrift av veckolön och veckoarbetstid leder till ytterligare en metod som vi t.ex.

kan beteckna med Output(). Därmed är behandlingen av nyckelbegreppet anställd

avslutad.

För att ta reda på om det finns fler nyckelbegrepp i projektet Lönespecifikation,

återvänder vi till beskrivningen (sid 93). Där handlar det mycket om att ”addera

arbetstiderna, beräkna veckolönen …” och utföra någon form av kontrollräkning.

Den här delen av projektet har att göra med tider och kräver att vi har rutiner som

kan hantera tider. Vi skulle kunna införa nyckelbegreppet arbetstid. Men arbetstid

är en underkategori av begreppet tid. Så för att vara mer generell och kunna använ-

da koden även i andra program där tid är av intresse, betecknar vi nyckelbegreppet

som tid. Vi kan sedan välja hour och min som datamedlemmar samt Sum() som

metod i klassen tid.

En annan omständighet som motiverar införandet av nyckelbegreppet tid, är data-

medlemmen dagarbetstider i klassen Employee. Varje datamedlem måste ju få en

datatyp när vi är klara med modelleringen och vill implementera modellen. Data-

medlemmen name kan få datatypen String. Datamedlemmen hourlyWage (tim-

lön) kan bli en double. Men vilken datatyp ska datamedlemmen dagarbetstider

ha? Det finns ingen fördefinierad datatyp för den. Så, vi måste själva definiera en

ny datatyp genom att skapa nyckelbegreppet tid och därmed klassen Time med da-

tamedlemmarna hour, min och metoden Sum().

Återstår problemet med kontrollräkningen som projektet kräver. En meningsfull

kontroll måste använda sig av ett annat beräkningsförfarande än det ”vanliga” för

att kunna verkligen kontrollera beräkningens resultat. Man kan t.ex. addera tider

genom att räkna i ”timme-minut-systemet” dvs addera timmarna och minuterna för

sig och få resultatet i timmar och minuter. Detta blir vårt ”vanliga” beräkningsför-

farande. Men man kan addera tider även genom att omvandla tiderna till decimaltal

först – t.ex. 2 timmar och 45 minuter till 2,75 – och addera dem sedan som vanliga

decimaltal, dvs räkna i det decimala talsystemet. Detta alternativa sätt att addera

tider kan vi använda för kontroll. Därför måste vi komplettera klassen Time med

 96

ytterligare en metod som utför omvandlingen av tider till decimaltal. Låt oss kalla

den för ToDecimal().

Implementeringen av modellen ovan som vore nästa steg behandlas inte här. Men i

fall att man gjorde en sådan implementering skulle ett körresultat se ut så här:

 Mata in anställdens för- & efternamn: Kalle Karlsson

 Mata in timlön: 92,50

 Arbetstid dag 1 i veckan (tim mellanslag min): 5 30

 Arbetstid dag 2 i veckan (tim mellanslag min): 4 45

 Arbetstid dag 3 i veckan (tim mellanslag min): 6 15

 Arbetstid dag 4 i veckan (tim mellanslag min): 7 10

 Arbetstid dag 5 i veckan (tim mellanslag min): 3 50

 Den anställda Kalle Karlsson

 har arbetat denna vecka: 27 timmar och 30 minuter

 Veckolönen är 2.543,75 kr

 Kontrollräkning: 2.543,75 kr

De sista fyra raderna av utskriften ovan visar själva lönespecifikationen. Raderna

innan levererar materialet till den (indata).

 97

En array är en datastruktur, en ordnad mängd av variabler av samma

datatyp grupperade under samma namn.

En array består av ett antal element vars position kallas för index.

3.3 Array som objekt

Ordet array betyder i engelskan ordnad skara eller ordnad uppställning (battle ar-

ray = stridsordning). Som datalogisk term hittar man i litteraturen begreppen fält,

vektor, matris, lista, … . Ibland används även härledd datatyp som syftar åt att den

är baserad på en annan datatyp. Vi kommer att använda den enkla termen array.

Index är synonym till nummer och specificerar varje elements position i arrayen för

att ”adressera” elementet. Elementen kan i sin tur vara av enkel, sammansatt eller

av referenstyp. Så man kan även – med hjälp av referenser – gruppera objekt till en

array. En array är den enklast tänkbara sammansatta datatypen. Som exempel tar vi

en array som är sammansatt av den enkla datatypen int. Varje element i en sådan

array kan betraktas som en indexerad dvs numrerad variabel av typ int.

Hittills behövde vi skriva 20 satser för att definiera 20 heltalsvariabler. Men nu ger

array oss möjligheten att göra samma sak med endast en sats:

Hittills: enkel datatyp int: Nu: sammansatt datatyp ”array av int”:

 int no1;

 int no2;

 . int[] no = new int[20];

 .
 .
 int no20;

Vi definierar en variabel no av datatypen int[], använder new och lägger till in-

formationen om antalet element inom hakparentes: [20]. Men vad är int[] för

datatyp? Det reserverade ordet new avslöjar att det är ett objekt. new allokerar min-

nesutrymme för ett objekt bestående av 20 int-värden och returnerar den samman-

hängande ”minneskedjans” adress – närmare bestämt adressen till dess första cell –

till referensvariabeln no. Därmed har vi att göra med en referenstyp: Datatypen

int[] är en referens till en int-array som i själva verket är ett objekt. För att göra

det ännu tydligare kan man skriva den nya koden även i två separata satser:

int[] no;
no = new int[20];

Det är inte den första utan den andra satsen, närmare bestämt koden new int[20]

som skapar själva arrayen. Därför står också storleken 20 där det behövs, nämligen

i satsen där new allokerar minne. Typiskt för array är hakparenteserna [], på en-

gelska brackets. I satserna ovan har [] två olika betydelser: I den första satsen

specificerar int[] variabeln no:s datatyp som en referens till en int-array, i den

 98

Indexregeln: I en array börjar numreringen av index alltid med 0.

 Därför gäller: elementets position = index + 1

andra satsen innehåller [20] arrayens storlek. Referensvariabeln no ersätter de 20

vanliga int-variablerna no1, no2, …, no20, vilket medför en stor effektivitet i

koden. Tänk dig att det är inte 20 utan fler data vi vill jobba med. no pekar fysiskt

på det första elementet av arrayen som allokeras i ett sammanhängande minnesut-

rymme. Därför kan man komma åt de andra elementen via indexering som är bara

ett annat namn för numrering.

Indexering i en array

Låt oss anknyta till exemplet ovan där arrayen och dess referens no definieras:

int[] no = new int[20];

Låt oss ytterligare anta att vissa värden – de som visas i bilden nedan – har tillde-

lats arrayens element efter satsen ovan. Eftersom elementen lagras i ett samman-

hängande minnesområde uppstår följande minnesbild av arrayen i datorns RAM:

Index: 0 1 2 17 18 19

 190d11 25 1257 -10 ... 358 65 219

 no[0] no[1] no[2] . . . no[17] no[18] no[19]

Medan själva arrayens allokering (den övre delen) görs av new int[20], allokeras

minnescellen no (den undre delen) av int[] no. Kopplingen mellan dem görs av

tilldelningsoperatorn, vilket gör att arrayens adress (t.ex. 190d11 – ett hexadecimalt

tal) som new har genererat, hamnar i minnescellen no. Den så uppkomna situatio-

nen innebär att no pekar på eller refererar till arrayen. Under arrayens minnes-

celler har vi skrivit C#-kod som kommer åt varje elements värde: no[0] ger den

första minnescellens värde 25 som har index 0, no[1] ger den andra minnescellens

värde 1257 som har index 1 osv. no[0] lagras vid adressen till arrayens första min-

nescell. no[1] lagras vid adressen till den andra minnescellen som ligger 1 x 4 by-

tes – storleken för en int – längre bort från no. no[2] lagras vid adressen som

ligger 2 x 4 bytes längre bort från no osv. Adressering i RAM sker nämligen byte-

vis, så att bytes som är grannar till varandra, har adresser som skiljer sig på en en-

het. Avgörande för denna indexeringsteknik är att en array alltid allokeras i ett

sammanhängande minnesområde. Ser man på det hela ur hårdvarans synpunkt kan

man förstå varför indexnumreringen börjar med 0 och inte med 1: no[0] kan tol-

kas som den adress som ligger 0 x 4 bytes längre bort från no, dvs no[0]:s adress

är identisk med adressen no. Därför gäller:

Med position menas numret som människan använder för att numrera elementen.

Människor är vana vid att påbörja numreringen av saker och ting med 1. Med index

 no 190d11

 99

menas numret som datorn använder för samma sak. C# och de flesta andra pro-

grammeringsspråken börjar numreringen av index i en array med 0. Tillämpad på

exemplet: Det 1:a elementet i den array som no refererar till har värdet 25 och

index 0: Positionen är 1 medan indexet är 0. Det 2:a elementet (värdet 1257) har

index 1 och koden no[1], det 3:e elementet (värdet –10) har index 2 och koden

no[2] osv. Det n:e elementet har alltid index n-1. Därför har också det 20:e ele-

mentet (värdet 219) index 19.

Det är avgörande när man arbetar med array och är samtidigt felkälla nr 1 – om

man glömmer det – att hålla isär det mänskliga sättet att numrera som börjar med 1

från C#-kodens sätt som börjar med 0. I exemplet ovan har vi definierat en array av

20 heltalselement med referenserna no[0], ..., no[19]. Antalet element är 20.

Indexen däremot går från 0 till 19. Felkälla nr 2 är att förväxla en arrayelements

index med dess värde: Det sista elementet i exemplet ovan har index 19, men vär-

det 219. Man har alltid med två tal att göra, index (position) och värde (innehåll).

Det gäller att hålla isär positionen från innehållet.

Tre egenskaper skiljer objekt från array:

 Indexering

 Allokering i ett sammanhängande minnesområde

 Alla arrayelement har samma datatyp.

Annars behandlas array i C# som objekt: Båda måste skapas med new och man kan

komma åt båda endast med referensvariabler. Båda initieras till defaultvärden även

om de kan förekomma som lokala variabler i metoder.

Definition och initiering av en array

Här testas allt vi sagt hittills om array speciellt indexregeln. Utöver det visas ytter-

ligare en egenskap hos array som relaterar den till objekt, nämligen en datamedlem

Length som lagrar arrayens storlek när den skapas. Programmet demonstrerar vad

som händer om man överskrider arrayens maximala index: Man kan kompilera,

men exekveringen stoppas vid överskridningen av indexgränsen, ett tecken på att

arrayens minnesallokering sker vid run time, dvs programmet körs.

// ArrayObj.cs

// Definierar en array som objekt, visar default-initierings-

// värdena 0, tilldelar och skriver ut de nya värden

// Skriver ut arrayens storlek med datamedlemmmen Length

// Överskridning av arrayens index leder till exekveringsfel

using System;

class ArrayObj

{
 static void Main()

 {
 int[] no; // Deklarerar en referens no

 // till en array av int

 // typ array vars adress

 100

 no = new int[4]; // new skapar ett objekt av

 // tilldelas referensen no

// int[] no = new int[4]; // Alternativt i EN sats

 Console.WriteLine("\n\tArray-storleken:\t\t"+no.Length);

 Console.Write("\n\tArrayens default-initiering:\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 no[0] = 64; // Tilldelar 1:a elementet

 no[1] = 86; // värdet 64 osv. Överskriver

 no[2] = 34; // default-initieringen

 no[3] = -6;

 Console.Write("\n\n\tArrayen efter tilldelning:\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 Console.WriteLine(

 "\n\n\tÖverskridning av arrayens index leder till " +

 "programavbrott:\n\n\t\tno[4] inte definierad\n\t" +

 "\tIndex 4 överskrider gränsen: Exekveringsfel!") ;

 no[4] = 1; // no[4] kan kompileras, men

 } // leder till exekveringsfel

}

Inte alla satser i programmet ArrayObj exekveras. Det blir avbrott när den kom-

pilerade koden no[4] i allra sista satsen ska exekveras där index 4 överstiger arra-

yens tillåtna maximala indexgräns som är 3 därför att new i början av programmet

allokerar endast 4 minnesceller åt arrayen, nämligen de med index 0, 1, 2 och 3.

Någon minnescell med index 4 är inte allokerad. Därför kan vi inte heller referera

till den. Men eftersom arrayens allokering sker med new och därmed under exe-

kveringstid leder detta till exekveringsfel, medan kompilatorn godtar den syntax-

mässigt korrekta koden no[4]. Programmet ArrayObj ger följande utskrift när

den körs:

 Arrayens storlek: 4

 Arrayens default-initiering: 0 0 0 0

 Arrayen efter tilldelning: 64 86 34 -6

 Överskridning av arrayens index leder till programavbrott:

 no[4] inte definierad

 Index 4 överskrider gränsen: Exekveringsfel!

Unhandled Exception: System.IndexOutOfRangeException: Index

was outside the bounds of the array.

...

 101

Att referera till icke-definierade element i en array leder till exekveringsfel.

I C# måste alla lokala variabler i en metod initieras innan de används.

Datamedlemmar i ett objekt initieras automatiskt till default-värden.

Att arrayelementen initieras till 0 (default) visar att arrayen är ett objekt.

Default-initiering av array

Det är anmärkningsvärt att det som gäller för referensen no – att den är oinitierad

när den skapas – inte gäller för själva arrayen. Referensen no är oinitierad och

måste initieras explicit eftersom den är en lokal variabel i Main(). Men trots att

även arrayen är lokal i Main() initieras dess element till 0 som är defaultvärdet till

datamedlemmar av datatypen int. Detta visar att arrayen behandlas som ett objekt.

Programmet ArrayObj skriver ut arrayelementens värden en gång innan och en

andra gång efter att de har fått värdena 64, 86, 34 och -6. Generellt gäller:

En annan slutsats från utskriften av programmet ArrayObj är:

C#-kompilatorn kontrollerar inte en arrays indexgränser: ArrayObj leder inte till

kompileringsfel. Däremot kontrollerar C#-interpretatorn (C# Virtual Machine) index-

gränserna och tillåter inte åtkomsten till icke-allokerade minnesplatser, dvs stoppar

skräpvärden. Detta är ur datasäkerhetssynpunkt är en fördel. Programmen blir

stabilare. C++ har i detta avseende en mer liberal attityd. Där ligger ansvaret för

kontroll av indexgränserna helt och hållet hos programmeraren.

Att no[4] inte är definierat, fast talet 4 ”förekommer” i definitionssatsen new

int[4], beror på att 4 i hakparentesen av no[4] betyder index, medan 4 i new

int[4] betyder storlek. Den korrekta tolkningen av [] beror på sammanhanget.

[] är symbolen för tre olika operatorer som överlagrar varandra dvs betyder olika i

olika sammanhang, se sid 102.

foreach-satsen

Denna sats som används i programmet ArrayObj (sid 99) är en ny kontrollstruktur

som inte kunde tas upp i kapitlet om kontrollstrukturer (Progr1) därför att den förut-

sätter array-begreppet eller liknande sammansatta datatyper, som vi inte hade hun-

nit gå igenom då.

foreach-satsen är idealisk för att skriva ut sammansatta datatypers värden. Den

gör samma sak som for-satsen, men har en lite annorlunda – ja t.o.m. lite enklare

syntax, om man är förtrogen med arrays. I programmet ArrayObj (sid 99) ser

satsen ut så här:
foreach (int element in no)

 Console.Write(element + "\t");

Översatt till svenska:

 102

För varje element av arrayen no

 Skriv ut elementet följt av en tabulator.

element – ett namn som är valt av oss – kallas för foreach-satsens iterations-

variabel. Den definieras till int och motsvarar for-satsens räknare. element pe-

kar på värdet (innehållet) som står i arrayen. Iteration betyder upprepning och

innebär här att satsens kropp upprepas: Programflödet fortskrider från element till

element tills alla element är genomgångna. Det reserverade ordet in betyder av el-

ler element av. no pekar på arrayen som ska loopas igenom. Därför: ” För varje

element av arrayen no”.

foreach-satsens enkelhet består i att den till skillnad från for-satsen varken be-

höver ett start-, steg- eller slutvärde resp. avslutningsvillkor. Den går helt enkelt

igenom arrayens alla element, från det första till det sista. Det är själva arrayen

som bestämmer start-, steg- och slutvärdena. Variabeln element pekar i varje varv

av loopen på resp. arrayelementets värde och kan sedan användas i loopens kropp

för att göra det man önskar. I vårt exempel för att skriva ut arrayens element följt

av en tabulator.

foreach-satsens iterationsvariabel måste ha samma datatyp som arrayelementen

eller en sådan datatyp som arrayelementens datatyp automatiskt kan konverteras

till. I vårt exempel har vi int. Det är t.o.m. möjligt att ha egendefinierade dataty-

per dvs klasser. Ett exempel på det är programmet ArrayOfRef (sid 107). Där dek-

lareras iterationsvariabeln i en foreach-sats till den egendefinierade klassen Fish

(sid 106), för att skriva ut ett Fish-objekts sort, vikt, längd, pris och frakt.

En viktig egenskap av iterationsvariabeln är att den inte kan ändra arrayelementens

värden i foreach-satsens kropp. Den är så att säga read only. I praktiken innebär

detta att iterationsvariabeln inte får förekomma till vänster om tilldelningsopera-

torn (=) i någon sats i foreach-satsens kropp. Vill man i foreach-satsens kropp

ändra på arrayelementens värden måste man använda for-satsen istället med arra-

yens index som räknare.

Hakparentesernas tre olika betydelser

1. [] som storleksoperator omsluter i definitioner med new antalet element i

arrayen specificerar därmed arrayens storlek. T.ex. innebär koden

new int[4]

i programmet ArrayObj att new skapar en array av int med 4 element dvs att

4 minnesceller reserveras för lagring av int-värden. Det gemensamma för alla

dessa element är att de lagras en efter den andra vid adressen eller referensen

no:

 no 0 0 0 0

 Här är frågan om ”Hur många element?”. I matematiken kallas det kardinaltal.

 103

2. [] som indexeringsoperator omslutar indexet till varje element av en array.

Här handlar det om ett elements position i arrayen. Man anger index inom

hakparenteser för att referera till elementet när man vill hämta eller tilldela det

ett värde. Indexregeln (sid 98) tillämpas enligt vilken indexeringen börjar med

0. Därför är no[4] i arrayen ovan inte definierat:

 no no[0] no[1] no[2] no[3]

 Här är frågan om ”Vilket element?”. I matematiken kallas detta ordinaltal.

3. [] som en del av datatypen ”referens till array” omsluter ingenting utan är

tom och skrivs direkt efter en datatyp för att definiera en ny referenstyp. T.ex.

innebär satsen
int[] no;

i programmet ArrayObj att en minnescell allokeras (en referensvariabel med

namnet no definieras) för lagring av en adress till en int-array. Vi kan i fort-

sättningen använda namnet no för att komma åt arrayen vid denna adress. I

satsen ovan har referensen no inte initierats. Det sker inte heller automatiskt,

för no är en lokal variabel i Main(). Det sker först med tilldelningen no =

new int[4]; som initierar referensen explicit.

 104

3.4 Hantering av array med referens

Man kan effektivisera hanteringen av arrays inte bara med foreach-satser utan

även genom att använda sig av en s.k. initieringslista som slår ihop definitionen

med initieringen – en kortform som ersätter koden new, men bibehåller dess egen-

skaper:

// ArrayRef.cs

// Initieringslista: Kortform för definition och initiering

// av en array i en och samma sats, inkluderar new implicit

// Utskrift av arrayens element med foreach-satsen

using System;

class ArrayRef

{
 static void Main()

 {
 int[] no = { 64, 86, 34, -6 }; // Initieringslista:
 // Definition OCH ini-

 // tiering av en array

// int[] no = new int[4] { 64, 86, 34, -6 }; Gör samma sak

 Console.Write("\n\tVärdena från arrayen skrivs ut " +

 " med referensen:\n\n\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 int[] copy = no; // Ny referens copy tillde-

 // las referensen no

 Console.Write("\n\n\tArrayens värden skrivs ut" +

 " med den nya referensen copy:\n\n\t");

 foreach (int element in copy)

 Console.Write(element + "\t");

 Console.WriteLine("\n\n\tEndast referensen kopieras," +

 " inte arrayen.\n");

 }
}

En körning visar att värdena i initieringslistan som först tillelas arrayen no verk-

ligen kopierats över till arrayen copy, för det är de som skrivs ut:

 Arrayens värden skrivs ut med referensen no:

 64 86 34 -6

 Arrayens värden skrivs ut med den nya referensen copy:

 64 86 34 -6

 Endast referensen kopieras, inte arrayen.

 105

En array i C# är alltid ett objekt som behöver en referens.

Både definitionssatsen och initieringssatserna i programet ArrayObj (sid 99) – det

är de 5 första satserna i Main() – kan slås ihop till en enda sats:

int[] no = { 64, 86, 34, -6 };

Satsen ovan är bara en förkortning på:

int[] no = new int[4] { 64, 86, 34, -6 };

Dvs initieringslistan kan skrivas efter new int[4] som egentligen skapar eller de-

finierar arrayen. Men new int[4] får utelämnas. Detta visar att den förkortade

versionen gör två saker: Först, fram till tilldelningstecknet definieras referensen no

(utan någon uppgift om arrayens storlek). Sedan, från och med tilldelningstecknet

tilldelas arrayen no:s element fyra värden som står i en kommaseparerad lista grup-

perad inom klamrarna { } som kallas arrayens initieringslista. Kortformen gör

precis samma sak som satsen med new. Kompilatorn får informationen om arra-

yens storlek genom att i initieringslistan räkna antalet element inom klamrarna {

}. Det är inte ens tillåtet att explicit ange det korrekta antalet element inom hak-

parenteserna []. Det blir kompileringsfel om man gör det, därför att no endast är

en referens till en array, inte arrayen själv. Observera även att man inte får använda

initieringslistan separat utan endast i samma sats som definitionen.

Valet av variabelnamnet copy kan vara missledande i följande sats av programmet

ArrayRef om man inte beaktar skillnaden mellan referens och array:

int[] copy = no;

copy blir nämligen en kopia av referensen no i satsen ovan, inte av arrayen – en ny

referens som kommer att peka på samma array som den gamla referensen no pekar

på. Det skapas ingen ny array eftersom det varken finns någon new eller någon ini-

tieringslista som skulle ersätta new. Anledningen till detta är – som vi konstaterat

tidigare – följande viktigt faktum:

För att skapa ett objekt måste en new-sats skrivas. En referens definieras utan new.

Minnesmässigt lagras arrayen på en och samma adress som från programmet kan

nås med referenserna no eller copy:

 no 64 86 34 -6

copy

 106

3.5 Array av referenser

Hittills har vi bildat arrays endast av den fördefinierade datatypen int. På samma

sätt kan man också definiera arrays av alla andra enkla datatyper. Men kan man

bilda även arrays av klasser dvs egendefinierade datatyper? Frågan måste pre-

ciseras: Menar man arrays av referenser, är svaret ja, därför att klasser –

referensernas datatyper – har exakt samma ”rättigheter” som vilka andra datatyper

som helst och kan därför skrivas överallt i koden där en fördefinierad datatyp kan

stå. Precis som referensvariabler kan skrivas överallt, där även en variabel av enkel

typ kan stå. Menar man arrays av objekt, är svaret nej, vilket vi kommer att förklara

i detta avsnitt. Vi kommer att inse att en array av objekt inte är nödvändig, när man

har en array av referenser vars element pekar på ett objekt. Array av referenser gör

oss samma tjänst som array av objekt.

Vi börjar med att deklarera en klass so§m vi sedan i programmet ArrayOfRef

(nästa sida) kommer att använda för att konstruera en array av referenser som i sin

tur ska användas för att peka på objekt av denna klass:

// Fish.cs

// Deklarerar klassen Fish med 3 datamedlemmar och 2 metoder

using System;

class Fish

{
 public string sort;

 public float weight, size;

 public int Price()

 {
 return (int) Math.Round(weight * 7.25 / 100);

 }

 public int Shipping()

 {
 return (int) Math.Round(weight * 0.02 + size * 0.1);

 }
}

Klassen Fish modellerar en fisk med datamedlemmarna sort, weight och si-

ze. En laxforell t.ex. med en viss vikt i gram och en viss längd i cm kan vara ett

objekt av denna klass, där laxforell är fiskens sort. Metoden Price() beräknar

priset på fisken oberoende av sort, med 7,25 kr per hekto. Metoden Shipping()

beräknar transportkostnaden utifrån fiskens vikt och längd genom att t.ex. mul-

tiplicera kostnadsfaktorn 0,02 med vikten och 0,1 med längden och addera dem.

Båda Metoder returnerar priset och frakten i hela kronor utan ören. Biblioteks-

metoden Math.Round() avrundar till närmaste heltal. Självklart kan man an-

märka att den här modelleringen har vissa brister ur praktisk synpunkt: För det

första är fiskpriser i praktiken inte oberoende av sorten. För det andra är både pris

 107

och frakt i regel belopp i kronor och ören dvs decimaltal och inte heltal. Men vi

gör medvetet båda förenklingar i modellen för att förenkla implementeringen och

koncentrera oss på det programmeringstekniska konceptet av array av referenser.

Vi vill nämligen använda detta koncept, för att på ett effektivt sätt skapa och

hantera många objekt av klassen Fish. För det här ändamålet är de nämnda bris-

terna i modelleringen irrelevanta. Följande program skapar en array av referenser

till Fish-objekt och anropar metoderna Price() och Shipping() för att sedan

registrera (skriva ut) alla uppgifter till varje objekt:

// ArrayOfRef.cs

// Skapar först en array av 5 referenser till Fish-objekt, skapar

// sedan 5 Fish-objekt och tilldelar dem till referenserna.

using System;

class ArrayOfRef

{
 static void Main()

 {
 Fish[] f = new Fish[5]; // Array av referenser

 // OBS! Inga objekt

 for (int i = 0; i < f.Length; i++)

 {
 f[i] = new Fish(); // Skapar objekt och

 // tilldelar adressen

 // till en referens

 Console.Write("\n\tMata in sorten till fisk" + (i+1) + ":\t");

 f[i].sort = Console.ReadLine(); // InputCs

 if (f[i].sort.Length <= 7) f[i].sort += '\t';

 Console.Write("\tMata in vikten till fisk" + (i+1) + ":\t");

 f[i].weight = (float) Convert.ToDecimal(Console.ReadLine());

 Console.Write("\tMata in längden till fisk" + (i+1) + ":\t");

 f[i].size = (float) Convert.ToDecimal(Console.ReadLine());

 }

 Console.Write("\nFisksort\tVikt i g\tLängd i cm\tPris\tFrakt\n" +

 "---\n");

 foreach (Fish element in f)

 {
 Console.WriteLine(element.sort + "\t " +

 element.weight + "\t\t " + element.size + "\t\t " +

 element.Price() + "\t " + element.Shipping() + "\n") ;

 }
 }
}

I programmet ArrayOfRef skapas en array av 5 referenser till Fish-objekt med

satsen:
Fish[] f = new Fish[5];

Observera att denna sats inte skapar något objekt alls, för då skulle det behövas ko-

den new Fish() – OBS! parentesen – som inte finns med i satsen ovan. Förväntar

man sig att en ”array av 5 Fish-objekt” skulle skapas med new Fish()[5] så är

det fel, för den här koden kan inte kompileras – ett tecken på att begreppet ”array

 108

av objekt” måste förkastas. Istället måste man gå två steg: Först måste en array av

rena referenser definieras som i satsen ovan. Initieringsproblematiken löses auto-

matiskt pga att en array alltid initieras till sin datatyps defaultvärden och att

datatypen referens default-initieras till null. Då spelar det ingen roll om det

handlar om referenser till objekt av klassen Fish eller av någon annan klass. Sedan

kan man fundera hur man explicit initierar referenserna så att de pekar på verkliga

objekt av typ Fish. Detta görs i programmet ArrayOfRef med:

 f[i] = new Fish();

som står i for-satsen. Först efter den här satsen har vi allokerat minnesutrymme

för ETT objekt av typ Fish, inte för en array av objekt, för i koden ovan finns in-

get spår av en sådan array. Detta objekts minnesadress tilldelas referensarray-

elementet f[i] där i tack vare for-loopen går från 0 till 4. Vi har endast att göra

med en array av referenser till Fish-objekt, för hakparentesen – arrayens symbol

– står efter referensvariabeln f som pekar på denna referensarray. Varje element i

denna referensarray pekar i sin tur på ett separat Fish-objekt. De två stegen som

tas är: Först från f till referensarrayen och sedan från den till objekten. Det första

steget står utanför och det andra steget i for-loopen. Efter objektens definition ini-

tieras varje objekts datamedlemmar sort, weight och size i for-loopen till vär-

den som läses in från konsolen. Sedan skrivs de fullständiga uppgifterna till varje

objekt, dvs även priset samt fraktkostnaden, ut. Anropet av metoderna Price()

och Shipping() är inbakade i utskriftssatsen. En körning av programmet Array-

OfRef kan ge följande slutlig dialog:

 Mata in sorten till fisk1: Laxforell

 Mata in vikten till fisk1: 719

 Mata in längden till fisk1: 38,5

 Mata in sorten till fisk2: Torsk

 Mata in vikten till fisk2: 423

 Mata in längden till fisk2: 28,7

 Mata in sorten till fisk3: Aborre

 Mata in vikten till fisk3: 550

 Mata in längden till fisk3: 25,5

 Mata in sorten till fisk4: Gädda

 Mata in vikten till fisk4: 985

 Mata in längden till fisk4: 58

 Mata in sorten till fisk5: Gös

 Mata in vikten till fisk5: 395

 Mata in längden till fisk5: 14

 109

Fisksort Vikt i g Längd i cm Pris Frakt

Laxforell 719 38,5 52 18

Torsk 423 28,7 31 11

Aborre 550 25,5 40 14

Gädda 985 58 71 26

Gös 395 14 29 9

”Array av objekt” ?

För att kunna datorisera en verksamhet med fiskar behöver vi objekt av typ Fish.

Självklart skulle man kunna skapa sådana objekt t.ex. med Fish f1 = new

Fish(); osv. Men vad gör man om man vill modellera en handel med stora fisk-

mängder under en längre period? Array skulle då vara den givna lösningen för att

effektivisera kodningen. Men funderar man närmare på begreppet ”array av

objekt” av typ Fish dyker upp följande fråga: Vilket defaultvärde ska t.ex. en ar-

ray av Fish-objekt få vid initieringen? Till de enkla datatyperna i C# kommer de

fördefinierade defaultvärdena 0, tom sträng, null, nolltecknet och false. Men

Fish är ju ingen fördefinierad datatyp. Det finns ingen begränsning på egendefi-

nierade datatyper (klasser) och det går inte att förutsäga vilka man kan skapa i C#.

Och därför går det inte heller att fastslå vilken default-initiering en sådan array

skulle få. Vi ser att begreppet ”array av objekt” leder till en återvändsgränd. Lös-

ningen är array av referenser – referenser till objekt dvs en tvåstegslösning som

användes i programmet ArrayOfRef (sid 107).

 110

3.6 Array som parameter i metoder

Array som bearbetar större datamängder ger upphov till mer komplexa och sofisti-

kerade program. Exempel på det är applikationer som söker, sorterar eller krypterar

data. Vi kommer i fortsättningen att behandla enkla varianter av sådana program.

Modularisering är metoden för att bryta ned stora komplexa program i mindre och

enklare moduler. Helst vill man ha program som består av ett antal enkla, över-

skådliga metoder där varje metod löser ett specifikt problem. Sedan vill man sätta

ihop dem dvs anropa dem med ett antal parametrar från Main() och kontrollera

hela händelseförloppet från denna metod som helst ska ha så lite kod som möjligt.

Ju mer avancerade datatyper man använder i sitt program desto större blir behovet

av modularisering. Självklart vill man även modularisera program som använder

array. I C# är det möjligt att skicka en array som parameter till en metod dvs att de-

finiera en array i parameterlistan. I nästa program definieras en void-metod

Method() med en array av int som parameter:

// ArrayParam.cs

// Skickar en stor array till en metod, men:

// Array som parameter i en metod behandlas som en referens

// Parameteröverföring sker med referensen: adressen skickas

using System;

class ArrayParam

{
 static void Method(int[] b) // Array som parameter

 {
 Console.WriteLine("\n\tI metoden\n\tär arrayens sista " +

 "element före ändringen " + b[999]);

 b[999] = 1; // Ändringen

 Console.WriteLine("\n\t\t\t och efter ändringen " +

 b[999] + '\n');

 }

/***/

 static void Main()

 {
 int[] a = new int[1000]; // Array med 1000 nollor

 Console.WriteLine("\n\tI Main()\n\tär arrayens sista " +

 "element FÖRE anropet " + a[999]);

 Method(a); // Referensanrop: arrayens

 // adress skickas till metod

 Console.WriteLine("\tI Main()\n\tär arrayens sista " +

 "element EFTER anropet " + a[999] + '\n');

 }
}

Låt oss börja titta på Main() innan vi går in på hur arrayen b i metoden Method()

behandlas. I Main() har vi en int-array a med 1000 element, alla initierade till

 111

default-värdet 0. En körning av ArrayParam avslöjar även en del intressanta ny-

heter för oss. Den viktigaste är att en ändring som görs i en annan metod åter-

speglas i Main():

 I Main()

 är arrayens sista element FÖRE anropet 0

 I metoden

 är arrayens sista element före ändringen 0

 och efter ändringen 1

 I Main()

 är arrayens sista element EFTER anropet 1

Som man ser har arrayen a:s sista element a[999] – kom ihåg att indexeringen

hos arrays börjar med 0 – som hade initialvärdet 0, EFTER anropet av metoden fått

värdet 1, fast denna ändring inte gjorts i Main() utan i metoden Method(), dessu-

tom med arrayen b och inte med a. Detta verkar bryta mot de regler vi lärt oss om

lokala variablers livslängd, därför att a trots allt är en lokal variabel i Main() och

därmed inte giltig i Method(). Samma sak gäller för b som är lokal variabel i Me-

thod() och därmed inte giltig i Main(). Gåtans lösning är att det handlar endast

om en och samma array till vilken a och b är bara två olika referenser. Därför pra-

tar vi i utskriften ovan inte om arrayen a och inte om arrayen b utan om arrayen,

för det finns bara en. För att första detta bättre låt oss titta på följande minnesbild

som ska förtydliga vad som händer i programmet ArrayParam:

 Index: 0 1 2 3 998

999

a = 12EFE0 0 0 0 0 0 0 1

 4 000 bytes

 4 bytes

Vi vet att varje int tar 4 bytes i minnesutrymme. Därmed tar hela arrayen a med

1 000 int-element 4 000 bytes. Detta ”stora” minnesutrymme allokeras av satsen:

int[] a = new int[1000];

a är en referensvariabel som lagrar ett hexadecimalt tal, säg 12EFE0 (decimalt:

1241056) som är arrayens adress. Adresser visas i datavärlden – det är en de facto-

standard – som tal i hexadecimalt format. Med adress menas alltid en plats i da-

torns RAM-minne (Random Access Memory). När en array definieras lagras den vid

en adress och arraynamnet blir en länk mellan programmet och denna fysiska ad-

 b 12EFE0

 112

ress. När arrayen a sedan i metodanropet Method(a); skickas som en aktuell pa-

rameter, då överförs inte arrayens värden utan arrayens adress till metoden Me-

thod(). Denna adress tas emot av den formella parametern b som är definierad i

metodens parameterlista som en array av int. På så sätt hamnar a:s adress, det

hexadecimala talet 12EFE0 i minnescellen b. Dvs b lagrar a:s adress som tar 4 by-

tes. Därmed pekar både a och b på en och samma array. Någon kopiering av ar-

rayinnehållet på 4 000 bytes till en ny plats förekommer inte. Endast adressen på 4

bytes kopieras till b vid metodanropet. I Main() kommer man åt arrayen med a

och i Method() gör man det med b. När vi sedan i Method() ändrar värdet i arra-

yens sista element med b från 0 till 1, kan ändringen ses i Main() med a.

Den ovan beskrivna metoden för överföring av parametrar kallas referensanrop.

Dvs inte parametrarnas värden utan deras adresser överförs vid metodanropet. När

parametrarnas adresser överförs och inte deras värden, förekommer ingen fördubb-

ling av minnesåtgång. Alla eventuella ändringar i metoden återspeglas i Main().

Valet av parameteröverföringsmetod styrs av datatypen:

Låt oss nu även gå in på med vilken syntax programmet ArrayParam använder en

array som en parameter i en metod.

1. Att definiera en metod med array som parameter

har gjorts i metoden Method()genom att definiera den formella parametern som

en array av int dvs samma datatyp som den aktuella parametern har i anropet:

int[] b

Antalet element inom hakparentesen får inte anges. Att antalet element inte behövs

här beror på att en formell parameter får sitt initialvärde från den anropande meto-

den. Även arraystorleken följer med vid anropet. Detta har i sin tur att göra med att

hela definitionen av en metod endast är en mall, en föreskrift om vad som ska

hända om metoden anropas, en potentiell kod som blir aktuell först när vi anropar

metoden. I metoden Method() står definitionen av parametern b till datatypen ar-

ray av int som vanligt i parameterlistan och därmed i metodhuvudet:

static void Method(int[] b)

2. Att anropa en metod med array som parameter

sker genom att skriva den aktuella parametern som array utan hakparenteser i an-

ropet:
Method(a);

Anmärkningsvärt är att det för första gången dyker upp en array utan hakparentes-

er. Så, tittar man inte på definitionssatsen några rader ovan kan man inte känna

igen a som array. Anledningen till att hakparentesen inte får stå efter arrayen a i

anropssatsen är just det vi sade ovan om referensanrop: Anropet skickar inte hela

I C# väljs automatiskt referensanrop (Call by reference) för parameter-

överföring vid metodanrop, om parametern är av datatypen array.

 113

arrayen med dess vär-den till Method() utan endast referensen a. En hakparen-

tesens skulle tolkas som kod som anger index som specificerar ett visst element i

arrayen. En anropssats av typen Method(a[999]); skulle skicka endast ett ele-

ment av arrayen nämligen det med index 999. Det blir i så fall ett tal av typ int

som skickas till metoden. Man kommer att få kompileringsfel i alla fall eftersom

metodens formella parameter b är definierad som en array av int och inte som en

vanlig int. Den enkla datatypen int kan inte konverteras till den sammansatta da-

tatypen array av int. De automatiska typkonverteringsreglerna gäller endast för

enkla datatyper. Det tänkbara alternativet Method(a[]); fungerar inte heller av

samma anledning: Det handlar om en icke-definitionssats där hakparentesens

innehåll tolkas som index. Men index får aldrig utelämnas (se punkt 1). För att

skicka en array som parameter till en metod måste alltså arrayen i metodanropet

skrivas endast med arraynamnet utan hakparentes. Självklart måste arrayen innan

anropet vara definierad i Main() som vanligt med hakparentes och en uppgift om

storleken. Arraynamnet används vid anropet som adressen till arrayen.

 114

3.7 Hantering av slumptal i C#

En nackdel av programmet GuessDo är att det hemliga talet är hårdkodat som 17.

Det skulle innebära en väsentlig förbättring av Gissa tal om programmet kunde

generera ett slumptal mellan 1 och 20 som hemligt tal varje gång man körde det.

Därför öppnar vi här en liten parentes om slumptal av typ int och deras hantering.

Generellt kan man med datorn som en deterministisk maskin som datorn är, inte

producera äkta slumptal utan endast simulera dvs på något sätt beräkna s.k. pseu-

doslumptal enligt en viss algortim. Överallt vi pratar om slumptal menar vi egent-

ligen pseudoslumptal. I C# kan man simulera slumptal på olika sätt, bl.a. med

klassen Random och dess metod Next() som returnerar slumptal av typ int mel-

lan 1 och int.MaxValue, om den anropas utan parameter. En annan variant av

Next() returnerar slumptal mellan sina parametrar, närmare bestämt:

a <= r.Next(a, b) < b

där r är ett objekt klassen Random. För att skräddarsy metoden Next(a, b) till att

få slumptal mellan 1 och 20 måste vi anropa r.Next(1, 21). Följande program

testar båda varianter av Next():

// DoRand.cs

// Skriver ut 5 slumptal mellan 1 och int.MaxValue samt

// 20 mellan 1 och 20

// Anropar två varianter av Random-metoden Next() en gång

// med ingen parameter, en gång med två paramtrar

using System;

class DoRand

{
 static void Main()

 {
 int i = 1, j = 1;

 Random r = new Random(); // Objekt av klassen Random

 Console.WriteLine("Slumptal mellan 1 & int.MaxValue:\n");

 do // do-loop

 Console.WriteLine("\t" + r.Next());

 while (i++ < 5); // i testas först, ökar sedan

 Console.WriteLine("\nSlumptal mellan 1 och 20:\n\t");

 do // do-loop

 Console.Write(r.Next(1, 21) + "\t");

 while (j++ < 20); // j testas först, ökar sedan

 Console.WriteLine('\n');

 }
}

En körning av DoRand ger följande resultat:

 115

Slumptal mellan 1 & int.MaxValue:

 1460841191

 225482400

 1438321568

 1700127070

 1513406452

Slumptal mellan 1 och 20:

7 20 2 12 12 14 3 16 3 15

2 15 12 9 1 10 14 15 1 2

För det första ser man att vi får endast heltal vilket beror på att båda metoderna

Next() och Next(a, b) returnerar int. Vill man ha decimalslumptal finns det en

annan metod i klassen Random som heter NextDouble(). För det andra har vi fått

i intervallet [1, 20] även randvärdena 1 och 20. Hade vi anropat r.Next(1, 20)

hade vi fått slumptal mellan 1 och 19 eftersom den andra parametern inte ingår i

slumptalsgenereringen. Så, anropet r.Next(1, 21) ger slumptal mellan 1 och 20.

När det gäller de båda varianterna av metoden Next() ger den ena utan parameter

de stora slumptalen i utskriften ovan mellan 1 och int.MaxValue och den andra

med två parametrar de små slumptalen mellan 1 och 20. Två olika do-satser i Do-

Rand tar hand om slumptalen i dessa två olika intervall. I den första do-satsen

anropas Next() utan parameter, i den andra med två parametrar. Vi har här att gö-

ra med ett koncept i programmering som kallas överlagring av metoder. Innebör-

den är att det är två olika metoder med samma namn, men olika parameterlistor. I

anropet avgörs vilken av dem det gäller därför att parameterlistan avslöjar identite-

ten – både för oss och kompilatorn. C#-biblioteket är fullt med överlagrade

metoder. De flesta biblioteksklasserna har t.o.m. flera överlagrade metoder dvs fle-

ra olika metoder med samma namn.

Array av slumptal

Eftersom vi i fortsättningen kommer att jobba med flera program som använder

slumptal lagrade i en array vill vi skriva en metod som kan användas av alla dessa

program. Vi har valt formen av en void-metod för att generera ett antal slump-

värden och tilldela dem till elementen i en array:

// RandArray.cs

// Definierar en metod Rand() som lagrar slumptal

// i arrayen no och skriver ut dem

// Anropar biblioteksmetoden Next(a, b) för att få ETT

// slumptal mellan a och b i varje varv av for-loopen

using System;

 116

class RandArray

{
 public static void Rand(Random r, int[] no, int a, int b)

 {
 Console.Write("\n\t" + no.Length + " heltal mellan " +

 a + " och " + b + " slumpas fram:\n\n\t");

 for (int i=0; i < no.Length; i++)

 {
 no[i] = r.Next(a, b);

 Console.Write(no[i] + " ");

 if ((i % 16 == 0) && (i != 0))
 Console.Write("\n\t");

 }
 Console.WriteLine("\n\n");

 }
}

För förståelse av biblioteksmetoden Next() hänvisas till hantering av slumptal.

Det nya i koden ovan är att slumptalen lagras i en array som kommer att användas

av fler program vilket demonstrerar inte bara modularisering utan även återanvänd-

ning av kod. Filen ovan innehåller inte ett fullständigt program utan endast en klass

med void-metoden Rand() som har fyra parametrar varav den ena är en array av

int, kallad no som lagrar slumptalen. Arrayen deklareras i parameterlistan och

tilldelas i kroppen mellan a och b via satsen:

no[i] = r.Next(a, b);

som i en for-sats anropar den biblioteksmetoden Next() som i sin tur i varje varv

av loopen slumpar fram ett slumptal mellan a och b. Vi har använt denna metod

tidigare i andra program. for-satsen som anropar metoden skriver ut slumptalen.

 117

3.8 Sökning och sortering

Ett viktigt – numera självklart – användningsområde för datorer är sökning i och

sortering av stora datamängder. Programmeringstekniskt sett kan sådana applika-

tioner inte skrivas utan array (eller högre datastrukturer). Därför är sökning och

sortering klassiska tillämpningar för sammansatta datatyper. Samtidigt ökar beho-

vet av modularisering ju mer avancerade datatyper man använder i sitt program.

Nu när vi lärt oss att skicka arrays som parametrar till metoder, kan vi modula-

risera program som arbetar med arrays. Detta är nödvändigt för att koncentrera sig

på den egentliga uppgiften nämligen sökning, sortering eller andra applikationer

som t.ex. kryptering som kommer att tas upp i nästa avsnitt. När man söker eller

sorterar data finns redan ett material i form av databaser, tabeller eller listor osv.

som man använder.

För att skaffa underlag för våra testprogram har vi valt att producera slumptal och

lagra dem i en array.

Följande program skapar med hjälp av metoden Rand() som är definierad i pro-

grammet RandArray (sid 115) en array av 200 slumptal mellan 1 och 1000 och skri-

ver ut dem. Sedan läser det in ett tal som ska hittas gemom att anropa metoden

MySearch() som är definierad i programmet Search (sid 117):

// SearchTest.cs

// Skapar en array och skickar den till metoden Rand() där

// den tilldelas slumptal. Ändringen fås tillbaka pga refe

// rensanrop. Den tilldelade arrayen skickas vidare till

// metoden MySearch() som söker efter ett inläst tal bland

// slumptalen.

using System;

class SearchTest

{
 static void Main()

 {
 Random r = new Random();

 int a = 1, b = 1000, searchedNo;

 int[] intArray = new int[200]; // Default-initiering

 RandArray.Rand(r, intArray, a, b); // Slump-tilldelning

 Console.Write("\tAnge tal som programmet ska söka " +

 + "efter:\t");

 searchedNo = int.Parse(Console.ReadLine()); // Sökt tal

 Search.MySearch(intArray, searchedNo); // Anrop av

 } // sökmetoden

}

 118

Även om vi inte gått igenom programmets alla delar – klassen Search med meto-

den MySearch() – ska vi titta på en körning för att bättre förstå vad som händer:

200 heltal mellan 1 och 1000 slumpas fram:

237 255 104 898 422 575 712 34 775 299 192 530 442 17 656 344 276

18 929 282 720 967 336 17 934 378 427 667 600 787 581 838 346

525 224 576 710 484 865 211 360 686 858 798 455 501 142 521 138

405 101 747 951 13 889 271 567 88 612 45 796 46 82 989 366

355 832 918 441 728 635 440 801 719 570 35 757 539 563 434 237 Anrop av

907 177 843 334 835 535 981 637 954 657 623 520 468 63 315 252 RandArray.

870 80 101 317 872 728 58 771 662 594 880 444 502 162 676 173 Rand()

179 809 890 517 887 303 532 468 852 282 488 719 660 568 981 657

256 784 888 460 463 118 13 180 120 73 673 242 303 538 783 793

982 98 342 660 174 446 13 215 549 281 113 591 241 987 759 95

261 224 836 719 922 217 711 709 444 358 398 815 631 938 166 962

147 696 738 563 874 322 484 811 419 674 912 830 653 423 587 781

962 226 982 80 703 712 519

 Anrop av

Ange tal som programmet ska söka efter: 519 Search.

Det sökta talet 519 är det 200:e elementet bland talen ovan. MySearch()

I programmet SearchTest:s Main()-metod finns bara anrop av två metoder samt

definition av deras aktuella parametrar och inläsning av det sökta talet. En array av

int har definierats med 200 element och tilldelats referensen intArray. I anrops-

satsen RandArray.Rand(r, intArray, a, b); skickas arrayen till metoden.

Det anmärkningsvärda är följande: När arrayen intArray som aktuell parameter i

anropet överförs till den formella parametern no i metoden RandArray.Rand(),

är den definierad och default-initierad till 0-värden. Faktum är att, när parametern

är en array, så används en metod för parameteröverföring där den aktuella paramet-

ern intArray, och den formella parametern no, behandlas som endast två olika

referenser till ett och samma minnesområde, dvs till en och samma fysisk array.

Metoden kallas för referensanrop. Med intArray definierar vi arrayen i Main()

och anropar RandArray.Rand(). Med no tilldelar vi samma array i metoden

RandArray.Rand() slumpvärden som överskriver arrayens default-värden. En

sådan ”arbetsdelning” mellan olika metoder kan endast göras med referensanrop.

Efter anropet av slumpmetoden läses in ett värde till variabeln searchedNo som

tillsammans med arrayen intArray skickas till metoden Search.MySearch().

När MySearch() anropas är arrayen intArray både definierad och tilldelad

slumpvärden. Sökmetoden får alltså slumptalsvärden som överförs till den formella

parametern t. Vid sidan om no är t nu en till minnescell som lagrar arrayen int-

Array:s adress i detta program. Även den här parameteröverföringen sker med re-

ferensanrop. Vid anropet skickas inte värdena i arrayelementen till metoden utan

endast adressen som lagras i intArray. I själva verket är det arrayens adress som

överförs till MySearch(), tas emot av t och används sedan i sökmetoden för att

hitta det sökta talet i arrayen:

 119

// Search.cs

// Metoden MySearch() tar emot två parametrar: arrayen t och

// heltalet s, det sökta elementet. Söker efter den första

// förekomsten av s bland arrayelementen.

using System;

class Search

{
 public static void MySearch(int[] t, int s)

 {
 int i;

 for (i = 0; i < t.Length; i++) // Söker igenom array t

 if (t[i] == s) // Sökkriteriet

 {
 Console.WriteLine("\n\tDet sökta talet " + t[i] +

 " är det " + (i+1) + ":e elementet" +

 " bland talen ovan.\n\n");

 break; // Bryter for-satsen

 } // när det sökta hittats

 if (i == t.Length)
 Console.WriteLine("\n\tDet sökta talet finns ej " +

 "bland talen ovan.\n\n");

 }
}

Det sökta talet skickas med den aktuella parametern searchedNo och tas emot av

den formella parametern s. Nu ska vi titta på vad void-metoden MySearch()

egentligen gör och hur den hittar eller inte hittar det sökta talet. Arrayen och det

sökta talet är givna. Frågan är: finns det sökta talet i arrayen? Om ja, på vilken po-

sition? Algoritmen är väldigt rak och enkel och kallas för linjär sökalgoritm:

1. Gå igenom alla element i arrayen dvs sök igenom arrayen t från början till

slutet (linjär sökning).

2. Jämför varje element med det sökta talet. Finns likhet med något element,

skriv ut ett hittat-meddelande samt elementets position som är lika med index

+ 1. Har du hittat en likhet avbryt sökningen.

3. Har du gått igenom alla arrayelement utan att hitta någon likhet skriv ut ett ej-

hittat-meddelande.

Denna algoritm hittar endast den första förekomsten av det sökta talet i arrayen och

tar inte hänsyn till att det ev. kan finnas flera exemplar av det sökta talet i arrayen.

Progammeringstekniskt har vi översatt algoritmens punkt 1 till C#-kod genom att i

metoden MySearch() skriva en for-sats som söker igenom arrayen t från index

0 till t.Length-1. I denna for-sats finns en if-sats som implementerar algorit-

mens punkt 2 och i sin tur innehåller två satser: Hittat-meddelandet och break-

satsen. En break-sats avbryter alltid den loop eller den switch-sats i vilken den

står, här alltså for-satsen. Det är den som enligt anvisningen i punkt 2 gör att pro-

grammet endast hittar den första förekomsten av det sökta talet i arrayen. I punkt

 120

3:s implementering – den sista if-satsen i MySearch() – utnyttjar vi att for-sat-

sens räknare i är väl definierad även efter for-satsen och att den har kvar det vär-

de den fick där. Om sökningen gått igenom alla arrayelement utan att hitta något

element som är lika med det sökta talet, har for-satsens räknare i nått värdet

t.Length eftersom detta är första värdet som inte uppfyller for-satsens villkor i

< t.Length. I detta fall avslutas for-satsen utan break så att villkoret till den

efterföljande if-satsen blir uppfyllt och skriver ut ett Ej-hittat-meddelande.

Bubbelsortering

Sökning i och sortering av stora datamängder är klassiska tillämpningar för sam-

mansatta datatyper, speciellt för arrays. Medan sökning i förra exemplet baserades

på en linjär algoritm, bygger sortering på en ny algoritm, även om den har vissa

likheter med sökning. Vi ska fortsätta kapitlet om arrays med en sorteringsalgoritm

som är en vidareutveckling av algoritmen för platsbyte av två värden. Vi har i

programmet MiniSort (sid 44) använt denna algoritm på två tecken:

if (char1 > char2)

{
 temp = char1;

 char1 = char2;

 char2 = temp;

}

Om tecknen står i fel ordning ska de byta plats. För att göra det läggs char1:s

värde undan i en tredje, temporär variabel temp. Sedan tar vi char2:s värde och

lägger det i char1. Till sist läggs värdet i temp (som ju har mellanlagrat char1:s

värde) in i char2. Illustrationen på sid 44 bör underlätta förståelsen av denna pro-

cess. I själva verket beskriver den en algoritm för sortering av två värden. För att

utvidga algoritmen till flera värden kopplar vi den till den linjära sökalgoritmen

som vi använde för sökning. Principen där var en if-sats inbakad i en for-sats.

for-satsen söker igenom värdena i en array och if-satsen innehåller sökkriteriet.

När det gäller sortering måste if-satsen istället byta plats på två värden om de står

i fel ordning. Denna if-sats har vi ju redan skrivit för två tecken (se ovan). Det

gäller bara att formulera den för två arrayelement och stoppa in den i en for-sats:

 for (i = 0; i < n-1; i++)
 if (t[i] > t[i+1])

 {
 temp = t[i];

 t[i] = t[i+1];

 t[i+1] = temp;

 }

där t är en array som innehåller värdena som ska sorteras och n antalet element i

arrayen. När två på varandra följande arrayelement t[i] och t[i+1] står i oöns-

kad ordning ska de byta plats där i genomlöper alla index. Man skulle kunna tro

att problemet vore löst med detta. Men eftersom if-satsen endast testar om två

grannvärden står i fel ordning och byter sedan plats på dem, räcker koden ovan in-

 121

te till att sortera arrayen fullständigt, även om for-satsen söker igenom hela arra-

yen. Jämförelsen mellan två grannvärden tar inte hänsyn till värden som står längre

bort. Om man tillämpar koden ovan på en array av 20 heltal som med metoden

RandArray.Rand() är utvalda ur intervallet [1, 100] får man följande resultat:

20 heltal mellan 1 och 100 slumpas fram:

75 2 24 94 30 88 10 42 50 54 27 47 45 83 34 86 67 66 14 14

De 20 slumptalen efter koden ovan:

2 24 75 30 88 10 42 50 54 27 47 45 83 34 86 67 66 14 14 94

Resultatet visar att sorteringen inte är klar, men att vi är på rätt väg. Arrayen är del-

vis sorterad. Bara om två grannvärden stod i fel ordning har de bytt plats och detta

har gjorts löpande genom hela arrayen. Denna delsortering kallas för ett pass i en

sorteringsalgoritm som är känd under beteckningen bubbelsortering. För att uppnå

en fullständig sortering måste detta pass upprepas flera gånger vilket innebär att

lägga in ovanstående for-sats i en ny for-sats som går igenom flera pass. I varje

pass kommer en del värden att placera sig i rätt ordning. Metoden kan jämföras

med luftbubblor i vattnet som så småningom stiger upp till vattenytan. Därav nam-

net bubbelsortering vars algoritm är implementerad i följande void-metod:

// Bubble.cs

// Sorterar heltal lagrade i arrayen t med en algoritm

// (bubbelsortering) som baseras på algoritmen för plats-

// byte av två objekt i programmet MiniSort (sid 44)

using System;

class Bubble

{
 public static void sort(int[] t)

 {
 int temp;

 for (int pass=0; pass<t.Length-1; pass++)

 for (int i=0; i<t.Length-1; i++)

 if (t[i] > t[i+1]) // Sortering i stigande

 { // ordning
 temp = t[i]; // Algoritm för platsbyte

 t[i] = t[i+1]; // av två grannelement:

 t[i+1] = temp; // t[i] och t[i+1]

 }
 Console.WriteLine("\tDe " + t.Length +

 " slumptalen efter sortering:");

 Console.Write("\n\t");

 for (int i=0; i < t.Length; i++) // Sorterad utskrift

 Console.Write(t[i] + " ");

 Console.WriteLine("\n\n");

 }
}

 122

Bubbelsorteringsalgoritmen består alltså av en if-sats inbakad i en nästlad for-

sats där if-satsen implementerar algoritmen för platsbyte av två värden. Den inre

for-satsen söker igenom arrayelementen, utför ett sorteringspass och den yttre

for-satsen upprepar sorteringspassen. Metoden sort() har arrayen t som ska

sorteras som parameter och används i den inre for-satsen. Den anropas från

Main() i följande program efter definitionen av arrayen intArray och dess till-

delning i metoden RandArray.Rand():

// BubbleTest.cs

using System;

class BubbleTest

{
 static void Main()

 {
 Random r = new Random();

 int a = 1, b = 100;

 int[] intArray = new int[17];

 RandArray.Rand(r, intArray, a, b);

 Bubble.sort(intArray);

 }
}

En körning av programmet BubbleTest visar att sorteringen nu genomförts full-

ständigt:

 17 heltal mellan 1 och 100 slumpas fram:

 23 76 23 31 67 94 79 38 46 10 85 100 87 61 17 71 14

 De 17 slumptalen efter sortering:

 10 14 17 23 23 31 38 46 61 67 71 76 79 85 87 94 100

Andra algoritmer

Som en sista anmärkning till kapitlet sökning och sortering bör påpekas att de algo-

ritmer som avhandlats här, är enkla och elementära. De är däremot inte de mest

effektiva när det gäller att minimera antalet operationer och maximera snabbheten.

Det finns effektivare (och mer komplicerade) algoritmer både när det gäller sök-

ning och sortering som vi inte tar upp här. Vi nämner bara en algoritm som kallas

binärsökning som heter så för att den i varje steg halverar arrayen man ska söka i.

Den behöver ett mindre antal operationer och är därmed snabbare. När det gäller

sortering finns den effektiva algoritmen Quicksort som bygger på rekursion. Re-

kursiva metoder är metoder som anropar sig själva – ett alternativ till repetition

(loopar).

 123

Generiska metoder är metoder vars parametrar har variabla datatyper.

Ex.: I metoden public static void G_out <T>(T[] t) är

parametern t är en array av typ T där T är en platshållare för datatyper.

Den variabla datatypen T (Type) definieras med <T> och kan användas

istället för vilken datatyp som helst: int, double, char, string, … .

3.9 Generiska metoder

 I programmering är variabler  platshållare för värden.

I generiska metoder kan variabler även användas som platshållare för datatyper.

I generiska metoder är de formella parametrarnas datatyper inte specifierade. De

bestäms först när metoderna anropas, närmare bestämt av de aktuella parameternas

datatyper. Detta innebär en generalisering som kallas för Generics som även kan

tillämpas på klasser. Man kan skriva ETT program för många tillämpningar.

Generics

I de flesta programmeringsspråken har man infört Generics som ett tillägg till stan-

darden först i de nyare versioner av språket. T.ex. i C++ kom motsvarigheten till

generics först på 90-talet och kallades för Templates. I Java introducerades generics

2004. I C# har det funnits stöd för Generics sedan 2005.

Genom att använda Generics behöver man inte längre skriva olika varianter av ett

program som i praktiken löser (nästan) samma problem. Dessa skiljer sig program-

meringstekniskt endast i datatypen till de involverade parametrarna. Alla dessa

varianter kan förenas i ett och samma – numera generiskt – program i vilka dataty-

perna är variabler. Låt oss säga, vi vill skriva ett program för sortering av olika

slags objekt. Det kan handla om sortering av heltal, decimaltal, bokstäver, strängar,

eller … . Sorteringsalgoritmen till alls dessa program är den samma oavsett man

sorterar heltal, decimaltal, bokstäver eller strängar. Metoden som implementerar al-

goritmen skrivs då generiskt, dvs med variabla datatyper, så att den kan användas

för att sortera olika typer av objekt beroende på i vilket syfte den anropas. Låt oss

titta på följande exempel:

// G_Output.cs

// Generisk metod G_out <>() skriver ut en array av variabel

// datatyp T som kan vara int, double, char eller string.

// foreach loopar igenom och skriver ut listans alla element

using System;

using System.Collections.Generic;

class G_Output

{
 public static void G_out <T>(T[] t)

 {

 124

 Console.Write("\t");

 foreach (T element in t)

 Console.Write(element + " ");

 Console.WriteLine("\n");

 }
}

Det som gör att metoden G_out <>() ovan som är definierad i klassen G_Output

är generisk är den annorlunda syntaxen i metodhuvudet:

public static void G_out <T>(T[] t)

Till skillnad från vanliga metoder har denna metod två parameterlistor. Den ena är

den vanliga med runda parenteser (T[] t) som innehåller parametern t, bara att

dess datatyp är en array av T. Den andra är den ”generiska parameterlistan” <T>

där T definieras som en formell parameter för en datatyp som bestäms när metoden

anropas, t.ex. så här: G_Output.G_out(hel); T får den datatyp som i det anro-

pande programmet har tilldelats variabeln hel. Har vi t.ex. definierat hel som en

int, så antar den formella parametern T den aktuella parametern int. I generiska

metoder finns det alltid en sådan typ-parameter. I det program där vi testar

generiska metoder, anropas G_out <>() fyra gånger, varje gång med en annan da-

tatyp, närmare bestämt med int, double, char och string. Med hjälp av dessa

bildas sedan med koden T[] arrays av int, double, char och string. Den van-

liga parametern t definieras då med koden T[] t till sådana arrays. Här följer nu

det program som testar och anropar två generiska metoder:

// GenericTest.cs

// Testar de generiska metoderna G_out <>() och G_sort <>()

// Skapar 4 arrays av olika typer: int, double, char, string

// och skickar dem till G_out <>() för utskrift och till

// G_sort <>() för sortering

// Generiska metoderna anropas som vanliga metoder

// Utskrift sker före och efter sortering

using System;

class GenericTest

{
 static void Main()

 {
 int[] hel = { 9, 7, 2, 1, 8, 5, 4, 3, 6 };

 double[] deci =

 { 9.9, 7.7, 2.2, 1.1, 8.8, 5.5, 4.4, 3.3, 6.6 };

 char[] boks = {'h','c','f','a','e', 'i', 'b', 'd', 'g'};

 string[] text = {"zeta","beta","gamma", "psi", "alpha"};

 Console.WriteLine(

 "\n\tOlika datatyper skrivs ut med samma generiska" +

 " metod \n\tFÖRE SORTERING:\n"); // Osorterad utskrift

 G_Output.G_out(hel); // Anrop av generisk

 G_Output.G_out(deci); // metod G_out <>()

 G_Output.G_out(boks);

 125

 G_Output.G_out(text);

 Console.WriteLine(

 "\tDe olika typerna sorteras med samma generisk metod");

 G_Bubble.G_sort(hel); // Sortering: Anrop

 G_Bubble.G_sort(deci); // av generisk metod

 G_Bubble.G_sort(boks); // G_sort <>()

 G_Bubble.G_sort(text);

 Console.WriteLine("\toch skrivs ut EFTER SORTERING:\n");

 G_Output.G_out(hel); // Sorterad utskrift

 G_Output.G_out(deci);

 G_Output.G_out(boks);

 G_Output.G_out(text);

 }
}

Den vitmarkerade koden visar fyra anrop av den generiska metoden G_out <>().

Det anmärkningsvärda är att dessa anrop inte skiljer sig alls från anrop av vanliga

metoder. De aktuella parametrarna hel, deci, boks och text är definierade som

arrays av int, double, char resp. string och skickar, när de anropas, inte bara

sina vanliga värden – heltalen, decimaltalen, bokstäverna och strängarna – till de

anropade metoderna, utan även sina datatyper. Medan de vanliga värdena i resp.

array går till den formella parametern t i resp. metods runda parameterlista, går da-

tatyperna arrays av int, double, char och string till parametern T i resp. me-

tods ”generiska” parameterlista <T>. Därmed blir varje datatyp specificerad och in-

satt på alla ställen där T står i den generiska metoden, vare sig i huvudet eller i

kroppen. Så här blir resultatet av en körning av programmet GenericTest:

 Olika datatyper skrivs ut med samma generiska metod

 FÖRE SORTERING:

 9 7 2 1 8 5 4 3 6

 9,9 7,7 2,2 1,1 8,8 5,5 4,4 3,3 6,6

 h c f a e i b d g

 zeta beta gamma psi alpha

 De olika typerna sorteras med samma generiska metod

 och skrivs ut EFTER SORTERING:

 1 2 3 4 5 6 7 8 9

 1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8 9,9

 a b c d e f g h i

 alpha beta gamma psi zeta

 126

Som man ser har heltalen, decimaltalen, bokstäverna och strängarna dvs värdena i

de fyra olika arrays skrivits ut som ett resultat av de vitmarkerade anropen i pro-

grammet GenericTest på förra sidan. Alla fyra anrop har gått till en och samma

generisk metod G_out <>() (sid 123) som skriver ut dem. Visserligen behöver man

skriva fyra olika anrop i programmet GenericTest. Men man behöver definiera

och koda själva metoden bara en gång, vilket innebär en stor effektivitet i utveck-

lingsarbetet.

Generisk bubbelsortering

Men körresultatet ovan har också andra delar, precis som själva programmet Ge-

nericTest. Efter att värdena skrivits ut skickas de till en annan generisk metod

som sorterar dem. Detta görs i GenericTest med anropen:

G_Bubble.G_sort(hel);

G_Bubble.G_sort(deci);

G_Bubble.G_sort(boks);

G_Bubble.G_sort(text);

Även dessa anrop kan man inte skilja från anrop till vanliga metoder, fast metoden

G_sort <>() är generisk. Efter sorteringen skickas arrayvärdena igen till utskrift,

så att vi ser dem sorterade i utskriften ovan – och detta sker inte bara för hel- och

decimaltalen samt bokstäverna utan även för strängarna. Även här använder vi oss

av en enda generisk metod som vi nu ska titta närmare på:

// G_Bubble.cs

// Genersik metod G_sort <>() sorterar en array av variabel

// datatyp T som kan vara int, double, char eller string

using System;

using System.Collections.Generic;

class G_Bubble

{
 public static void G_sort <T>(T[] t) where T :

 IComparable<T>

 { // Krävs för CompareTo()
 T temp;

 for (int pass=0; pass<t.Length-1; pass++)

 for (int i=0; i<t.Length-1; i++)

 if (t[i].CompareTo(t[i + 1]) > 0) // Om t[i] >

 t[i+1]

 { // Sortering i sti-
 temp = t[i]; // gande ordning

 t[i] = t[i + 1]; // Algoritm för

 t[i+1] = temp; // platsbyte

 }
 }
}

 127

Metoden G_sort <>() i klassen G_Bubble är en generisk variant av den vanliga

metoden sort() i klassen Bubble som presenterades när vi behandlade sökning

och sortering. Här gäller samma som vi sa om metoden G_out <>(): Den gene-

riska formella parametern T står för datatyper som är kopplade till den aktuella an-

ropsparametern som skickas till den vanliga formella parametern t, dvs för data-

typerna till de objekt som ska sorteras.

Constraints

Till skillnad från G_out <>() har vi i den generiska metoden G_sort <>() ett

tillägg i metodhuvudet:

public static void G_sort <T>(T[] t) where T : IComparable<T>

Tillägget where T : IComparable<T> är en s.k. constraint, dvs en restriktion

som läggs på T. Den är nödvändig eftersom vi i metodens kropp använder oss av

ett villkor i if-satsens huvud som ska jämföra två på varandra följande element i

arrayen:
if (t[i].CompareTo(t[i + 1]) > 0)

Motsvarigheten till detta i den vanliga icke-generiska metoden sort() är:

if (t[i] > t[i + 1])

Anledningen till att denna kod inte fungerar i den generiska metoden är att vi inte

längre har att göra med en array av int vars element ska jämföras med varandra,

utan med en generaliserad datatyp T som kan vara vilken datatyp som helst. Hur

ska koden avgöra sanningsvärdet till ett sådant villkor om T är t.ex. en sträng?

Självfallet måste den ta strängarnas begynnelsebokstäver och jämföra deras ASCII-

koder med varandra för att avgöra vilken som är större. Men en sådan ”intelligens”

finns inte automatikst inlagd i den generaliserade datatypen T, utan den är förpro-

grammerad i metoden CompareTo(). För att kunna åt denna kod måste T ärva

denna metod som i sin tur finns i Interfacet IComparable<>. Därför måste föl-

jande tillägg skrivas i huvudet till metoden G_sort <>():

where T : IComparable<T>

Annars kan vi inte kompilera if-villkoret (t[i].CompareTo(t[i + 1]) > 0) .

Det enklare alternativet t[i] > t[i + 1] som betyder samma sak, fungerar inte

heller när vi arbetar med den generaliserade datatypen T istället för med int eller

en annan specifik datatyp.

I generisk programmering kallas konstruktionen where T : IComparable<T> en

constraint dvs en restriktion som man lägger på T. Just denna constraint innebär att

data av typ T ska vara jämförbara. Man ska kunna använda jämförelseoperatorerna

>, <, == osv. på dem. Interfacet IComparable<> innehåller ett antal fördefinierade

metoder som implementerar denna möjlighet.

 128

3.10 Listor

Listor är dynamiska arrays. Datastrukturen array har många fördelar när det gäller

hantering av stora datamängder, men också en stor nackdel, nämligen att man i

förväg måste ange storleken på arrayen utan att ha möjligheten att ändra den vid

behov under programmets gång, s.k. statisk minnesallokering, dvs minnesutrym-

mets storlek bestäms när man definierar arrayen. När koden kompileras reserveras

minne av den angivna storleken som inte längre kan ändras under exekveringen.

Anta att vi vill ha ett program som läser data, t.ex. laddar ned text, bild eller ljud –

från någon källa, säg en fil, och vi vet inte hur mycket data filen innehåller, när vi

skriver kod. Därför kan en array inte klara av den här uppgiften. När man läser data

från en fil ska minnesallokeringen helst göras samtidigt som filen läses under

programmets körning. Man vill helst läsa in data till ett C#-program utan att på

förhand behöva ange dess storlek. Lösningen vore dynamisk minnesallokering, dvs

minnesutrymmet kan utökas efter behov under programmets exekvering. En slags

dynamisk array behövs. Och just en sådan dynamisk array är den nya datastruktur-

en List som vi ska stifta bekantskap med i detta avsnitt. List är inte bara dyna-

misk utan har även en mängd fördefinierade kraftfulla metoder som sorterar, söker

i eller på annat sätt manipulerar listor, så att man själv inte behöver koda så myc-

ket. I denna bemärkelse är listor bättre arrays.

Följande program visar ett exempel på denna nya datastruktur:

// Lista.cs

// Skapar en lista och skickar den till metoden RandL() där

// den fylls med slumptal. Listan skickas vidare till List-

// metoden Sort() där den sorteras. Utskrift sker före +

// efter sortering.

using System;

using System.Collections.Generic; // Krävs för List

class Lista // OBS! INTE List

{
 static void Main()

 {
 List<int> intList = new List<int>(); // List-objekt

 Random r = new Random(); // av int

 int a = 1, b = 1000;

 Console.WriteLine("\n\t100 heltal mellan " + a +

 " och " + b + " slumpas till ett List-objekt:\n");

 RandList.RandL(r, intList, a, b); // Slumptilldelning

 Print.Out(intList); // Osorterad utskrift

 intList.Sort(); // List-sortering

 Console.WriteLine(

 "\tHeltalen sorteras med List-metoden Sort():\n");

 Print.Out(intList); // Sorterad utskrift

 }
}

 129

Klassen List

Klassen List är fördefinierad i C#-biblioteket System.Collectins.Genetric.

För att använda listor måste vi skapa ett objekt av denna klass. Det gör man med

satsen:
List<int> intList = new List<int>();

Variabeln som refererar till det nya objektet kallar vi intList. Det speciella med

klassen List är att den måste kopplas till en datatyp. Här är den kopplad till int,

dvs klassen heter egentligen List<int>. Vi har skapat en lista av int, ganska lik-

nande en array av int, bara att vi nu inte behöver ange antal element. Det är just

det dynamiska i listor till skillnad från arrays. Som en konsekvens får vi tilldela till

en lista av int också bara heltal av typ int. Varje försök att tilldela till den andra

än int-värden kommer att leda till kompileringsfel. Man kan förstås skapa även

objekt av listor av alla andra datatyper inkl. andra klasser. Har man t.ex. definierat

en klass Person kan man med List<Person> p = new List<Person>();

skapa en lista över personer. p refererar då till ett objekt av typ List<Person>.

Varje element i denna lista är i sin tur ett objekt av typ Person.

Listan intList vi skapat ovan är just nu tom. Den blir inte heller tilldelad i koden

på förra sidan. För att fylla den med värden skickar vi den som parameter till

metoden RandL() som vi definierar i klassen RandList:

// RandList.cs

// Metod RandL() slumpar fram heltal mellan a och b och

// lagrar dem i ett List-objekt med List-metoden Add()

using System;

using System.Collections.Generic;

class RandList

{
 public static void RandL(Random r, List<int> no, int a,

 int b)

 {
 for (int i=0; i < 100; i++) // Här fylls listan

 no.Add(r.Next(a, b)); // med slumptal

 }
}

Deklarationen av parametern i metoden RandL():s parameterlista sker med koden

List<int> no. Namnet no på den formella parametern är oväsentligt. Eftersom

referensanrop tillämpas, pekar no i alla fall på samma objekt som intList dvs

den lista som skapades i Main(). Så fyller vi den i for-satsen med 100 slumptal

genererade av den gamla Rand()-metod som vi använt tidigare och som i varje

varv skapar ett slumptal mellan a och b (1 och 1000). För att placera dem i listan

använder vi oss av metoden Add() som är definierad i klassen List, därför anro-

pet no.Add(). Varje anrop infogar ett slumptal i listan. Vi behöver inte ange i för-

väg hur lång listan ska vara. Den är öppen och växer vid behov. Det är fördelen

 130

med dynamiska arrays som tillhandahålls i klassen List. Slumptalsgenererings-

metoden Next() anropas i Add()-metodens parameterlista med r.Next(a, b)

som är definierad i biblioteksklassen Random.

Vi har även modulariserat utskriftsproceduren med all layout som tillhör den, i me-

toden Out() i den externa klassen Print som ser ut så här:

// Print.cs

// Metoden Out() skriver ut en lista med en foreach-sats som

// loopar igenom listans ALLA element

using System;

using System.Collections.Generic;

class Print

{
 public static void Out(List<int> t)

 {
 Console.Write("\t");

 int i = 1;

 foreach (int element in t)

 {
 Console.Write(element + " ");

 if (i % 14 == 0) // Radbyte var
 Console.Write("\n\t"); // 14:e utskrift

 i++;

 }
 Console.WriteLine("\n");

 }
}

I metodens huvud väljs namnet t för den formella parametern. Eftersom metodens

anrop i Main() sker med den aktuella parametern intList, pekar t på samma lis-

ta som intList. Därför skrivs ut listans innehåll – de 100 slumptalen – när Out()

anropas första gången direkt efter att listan blivit tilldelad i Rand()-metoden. An-

dra gången sker anropet efter sorteringen. All utskrift i Out() sker med hjälp av en

kontrollstruktur som är typisk för listor och arrays och som inleds med det reserve-

rade ordet foreach.

foreach-satsen i listor

Det är en kontrollstruktur som behandlades tidigare, fast då var det i samband med

array. Nu används foreach med listor. Skillnaden är dock obetydlig. I klassen

Print (ovan) ser huvudet till foreach-satsen ut så här:

foreach (int element in t)

Översatt till svenska:

För varje element av listan t gör:

 131

Iterationsvariabeln element definieras till int. Men till skillnad från for-satsens

räknare är element inget index (nr) i listan utan en variabel som pekar på själva

värdet (innehållet) som står i listan. t är en referens till listan som ska loopas

igenom. foreach-satsen går igenom listans alla element, från det första till det

sista. Variabeln element som i varje varv pekar på resp. listelementets värde,

används sedan i loopens kropp för att göra det man önskar. I vårt exempel sätts den

i följande anrop för att skriva ut listans element följt av ett mellanslag:

Console.Write(element + " ");

Mellanslaget samt resten av koden i metoden Out() är till för att få en snygg

layout i utskriften. Räknaren i som vi själva definierar, håller reda på loopens varv

och ger oss möjligheten att i följande if-sats infoga ett radbyte samt tabulator var

14:e utskrift utom i den allra första:

 if (i % 14 == 0)
 Console.Write("\n\t");

Äntligen kan vi testa programmet Lista som kan resultera i följande utskrift:

 100 heltal mellan 1 och 1000 slumpas till ett List-objekt:

 378 297 220 134 803 115 218 227 346 300 508 559 845 872 417

 829 559 105 477 869 602 493 117 713 541 92 572 988 796

 982 184 431 259 39 566 724 465 722 14 817 235 751 446

 256 650 231 413 914 907 297 464 943 557 957 999 533 181

 155 594 359 191 231 79 365 764 725 948 454 307 341 12

 485 739 661 635 852 695 862 711 958 680 659 729 147 166

 242 522 303 688 681 544 958 129 656 274 652 320 82 493

 573

 Heltalen sorteras med List-metoden Sort():

 12 14 39 79 82 92 105 115 117 129 134 147 155 166 181

 184 191 218 220 227 231 231 235 242 256 259 274 297 297

 300 303 307 320 341 346 359 365 378 413 417 431 446 454

 464 465 477 485 493 493 508 522 533 541 544 557 559 559

 566 572 573 594 602 635 650 652 656 659 661 680 681 688

 695 711 713 722 724 725 729 739 751 764 796 803 817 829

 845 852 862 869 872 907 914 943 948 957 958 958 982 988

 999

”Kan resultera”, därför att det blir andra siffror i varje körning pga at det är slump-

tal som genereras och som är olika varje gång man kör programmet. Sorteringen

görs i programmet Lista:s anrop (sid 128) av metoden Sort() som är fördefinie-

rad i klassen List.

 132

Övningar till kap 3

3.1 Modifiera klassen Fish (sid 106) så här: Deklarera datamedlemmarna som

private och metoderna som public. Förse klassen med ytterligare två

publika metoder, så att den nya klassen Fish_priv har följande utseende:

using System;

class Fish_priv

{
 private string sort;

 private float weight, size;

 public Fish_priv(string S, float w, float s)

 {
 sort = S;

 weight = w;

 size = s;

 }

 public int Price()

 {
 return (int) Math.Round(weight * 7.25f / 100);

 }

 public int Shipping()

 {
 return (int) Math.Round(weight * 0.02f + size * 0.1f);

 }

 public string AsString()

 {
 return sort + "\t " +

 weight + "\t\t " + size + "\t\t " +

 Price() + "\t " + Shipping() + "\n" ;

 }
}

Modifiera programmet ArrayOfRef (sid 107) så att det modifierade pro-

grammet gör samma sak som det ursprungliga.

3.2 Skriv ett program som läser in 10 heltal från konsolen, lagrar dem i en array

och skriver ut dem i omvänd ordning.

3.3 Skriv ett program som läser in text i gemener, lagrar den i en array av char

och skriver ut den framhävd i versaler och med mellanslag mellan varje tec-

ken.

3.4 Skriv ett program som frågar efter användarens för- och efternamn, hälsar

sedan användaren i en utskrift med fullständiga namnet, förnamnets längd

samt efternamnets första och sista bokstav. Lös uppgiften generellt utan att

använda information om något speciellt för- och efternamn.

 133

3.5 Skriv ett program där Main() läser in en persons fullständiga namn och

hälsar tillbaka med namnets initialer. Dessa ska bestämmas och skrivas ut i

en annan metod – med huvudet static void Initials(char[] name)

– som anropas i Main().

3.6 Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140 (tänkbara

hastigheter på en motorväg), lagrar dem i en array kallad hastighet, be-

räknar och skriver ut deras medelvärde med förklarande text. Använd klas-

sen RandArray (sid 115) som extern modul.

3.7 Modifiera programmet Lista (sid 128) så att sorteringen av slumptalen görs

med vår egen bubbelsorteringsmetod sort() (sid 121) istället för med den

fördefinierade List-metoden Sort(). Testa först med array-notationen

som sort() är skriven i. Försök sedan att skriva om sort() till en List-

version.

 134

Kapitel 4

Tillämpningar

 Ämne Sida Program

4.1 Kryptering av strängar 135 EncryptStr

4.2 Kryptering av text, teckenvis 138 EncryptChar

4.3 Filhantering 141 WriteReadFile

- Append 144 AppendFile

4.4 Slumplösenord 146 RandPasswdTest

4.5 Kryptering av filer 150 EncryptFile

 Övningar till kapitel 4 155

 135

4.1 Kryptering av strängar

I C# är det inte själva objekten som skickas och fås tillbaka utan snarare deras refe-

renser, när man har dem i metoder. Det vore slöseri med datorns resurser (minnes-

utrymme) om man kommunicerade tunga objekt istället för lätthanterade referenser

till objekt. Så, det är inget nytt utan snarare det normala att använda referenser som

företrädare för objekt. I metoden Rand(Random s, int a, int b) har vi redan

använt objektreferenser som parametrar, där s är en referens till ett objekt av

klassen Random. Samma sak kan man göra med returvärden.

Referens som parameter och returvärde

Följande klass visar ytterligare ett exempel på en metod som har en referens t till

ett String-objekt som parameter, men även en String-referens som returvärde.

Dessutom har den också en vanlig int-parameter. Krypteringsmetoden En-

crypt() skrivs i denna klass och anropas från Main() i klassen EncryptStr-

Test (nästa sida). Krypteringen är väldigt enkel, men kan lätt ersättas av mer sofis-

tikerade krypteringsalgoritmer.

// EncryptStr.cs

// Metoden Encrypt() tar emot en sträng och krypterar den ge-

// nom att förskjuta alla tecken med n steg i teckentabellen

// Den krypterade strängen skrivs teckenvis till platsen temp

// Sedan returneras den krypterade strängen från metoden

using System;

class EncryptStr

{
 public static String Encrypt(String t, int n)

 {
 char ch;

 String temp = ""; // Tom sträng

 for (int i=0; i <= t.Length - 1; i++)

 {
 ch = t[i]; // Tar tecknen från t

 ch = (char) (ch + n); // Ändrar tecknen

 temp += ch; // Lägger tecknen i temp

 }

 return temp; // Skriver till Encrypt

 }
}

Med den första parametern t får metoden Encrypt() tillgång till det String-ob-

jekt som skapas i den anropande metoden Main(). Adressen till detta objekt ko-

pieras över till referensvariabeln t när Encrypt() anropas. Samma sak sker med

krypteringsnyckeln vars värde kopieras till den andra parametern n. Sedan har vi i

kroppen av metoden två lokala variabler ch och temp. Den första som är av typ

 136

char initieras i for-loopen och lagrar varje tecken från den inkommande okryp-

terade strängen t, men även det krypterade tecknet för att slutligen överföra det via

konkatenering till strängen temp. for-satsen går igenom alla tecken i t genom att

initiera sin räknare i till 0 och avsluta loopen när räknaren har nått strängens sista

tecken. Att man börjar med 0 beror på att C# räknar strängens första tecken med

index 0, det andra med index 1 osv. så att det sista tecknet får t.ex. index 25 om

strängen innehåller 26 tecken. Length är en String-egenskap som ger antalet tec-

ken i strängen, här t. Därför har vi i for-loopen avslutningsvillkoret i <=

t.Length - 1. I varje varv av den läggs det uttagna tecknet från t i den lokala

char-variabeln ch och görs om till ett nytt tecken med satsen ch = (char) (ch +

n); där tecknet ch:s Unicode adderas med heltalet n (teckenaritmetik). Resultatet

omvandlas med explicit typkonvertering till char för att sedan tilldelas ch och

överskriva dess gamla värde. Utan explicit typkonvertering skulle vi få kompi-

leringsfel pga C#:s vägran att automatiskt typomvandla nedåt från int till char.

for-loopens sista sats bygger den krypterade strängen temp som efter for retur-

neras när Encrypt() anropas i programmet EncryptStrTest:

// EncryptStrTest.cs

// Skickar i ett första anrop strängen text samt en slumpad

// krypteringsnyckel till metoden Encrypt() och anropar den

// en andra gång med den krypterade texten och inverterad

// (negativ) krypteringsnyckel för att återställa strängen

using System;

class EncryptStrTest

{
 static void Main()

 {
 String text = "abcdefghijklmnopqrstuvwxyz";

 Random r = new Random();

 int key = r.Next(50, 200); // Krypterings-

 // nyckeln

 Console.WriteLine("\n\tKryptering av text: ");

 Console.Write("\n\tOkrypterad text: " + text);

 text = EncryptStr.Encrypt(text, key); // 1:a anropet

 // krypterar

 Console.Write("\n\n\tKrypterad text: " +

 text + "\n\n\tKrypteringsnyckeln: " + key);

 text = EncryptStr.Encrypt(text, -key); // 2:a anropet

 // återställer

 Console.WriteLine("\n\n\tÅterställd text: " +

 text + '\n');

 }
}

Ett körresultat visar följande utskrift:

 137

 Kryptering av text:

 Okrypterad text: abcdefghijklmnopqrstuvwxyz

 Krypterad text: ¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾

 Krypteringsnyckeln: 68

 Återställd text: abcdefghijklmnopqrstuvwxyz

Det engelska alfabet som använts som teststräng har krypterats med slumpnyckeln

68 och återställts med -68. Båda operationer utförs i programmet ovan med anrop

av metoden Encrypt(), definierad i klassen EncryptStr (sid 135). Det första an-

ropet sker med den key som anropet r.Next(50, 200) genererar, dvs ett heltals-

slumpvärde mellan 50 och 200.

Initieringen av datamedlemmen temp till en tom sträng är nödvändig därför att den

sedan används i satsen temp += ch; som pga den sammansatta tilldelnings-

operatorn += är identisk med temp = temp + ch; . Därför måste den vara initierad

när den initialt konkateneras med char-variabeln ch som av + automatiskt typkon-

verteras till String. Även här är det avgörande att skilja mellan referensen temp

och den tomma strängen som ett String-objekt.

 138

4.2 Kryptering av text, teckenvis

Vi ska nu dra lite praktisk nytta av våra samlade kunskaper om bl.a. slumptal,

ASCII-koder, array, stränghantering, metoder och referensanrop, för att med ganska

enkla medel skriva en liten applikation om kryptering av text. Egentligen har vi

redan skrivit en sådan, nämligen klassen EncryptStr med return-metoden

Encrypt(). Men då löstes problemet med bibliotekslkassen String. Nu ska vi

göra det med en egen array av char och en void-metod istället. Följande program

läser in text som en char-array, skickar den till void-metoden Encrypt() där

den krypteras resp. återställs teckenvis med ett slumptal som krypteringsnyckel.

Tekniken som används för kryptering är samma som i EncryptStr-metoden, fast

ännu enklare i och med man arbetar på char-nivå. Ett String-objekt kan inte ma-

nipuleras på char-nivå. Nu behöver strängen själv inte kopieras till en annan plats

utan kan pga referensanrop krypteras på samma ställe, varför char-programmet

behöver hälften av det minnesutrymme som det gamla String-programmet be-

hövde.

// EncryptCharTest.cs

// Läser in text som en char-array och skickar den med en

// krypteringsnyckel till metoden Encrypt() där den krypteras

// Referensanrop gör den krypterade texten tillgänglig i

// Main(). Encrypt() anropas en andra gång med den krypterade

// texten och en inverterad (negativ) krypteringsnyckel för

// att återställa den.

using System;

class EncryptCharTest

{
 static void Main()

 {
 Random r = new Random();

 int key = r.Next(50, 200); // Slump-krypte-

 // ringsnyckeln

 Console.Write("\nSkriv text som ska krypteras:\t");

 char[] text = Console.ReadLine().ToCharArray();

 Console.Write("\n\tOkrypterad text:\t");

 Output(text);

 EncryptChar.Encrypt(text, key); // 1:a anropet

 // krypterar

 Console.Write("\n\n\tKrypterad text:\t\t");

 Output(text); // text är ändrad

 EncryptChar.Encrypt(text, -key); // 2:a anropet

 // återställer

 Console.Write("\n\n\tÅterställd text:\t");

 Output(text); // text är ändrad

 Console.WriteLine("\n\nKrypteringsnyckeln:\t\t" +

 key + '\n');

 }

 139

 static void Output(char[] a) // Metod som

 { // skriver ut
 foreach (char element in a) // en array

 Console.Write(element);

 }
}

Med en array av char allokeras minne för texten med en maximal längd som är

föreskriven av metoden Console.ReadLine(), något antal tecken som ryms på

en rad, kanske 80 eller lite fler. Sedan överförs parametern text med ett första an-

rop av metoden Encrypt():

 EncryptChar.Encrypt(text, key);

som är definierad i klassen EncryptChar (se nedan), till metoden Encrypt(). I

detta anrop används automatiskt referensanrop eftersom text är definierad som

array. Därför är ändringarna som görs med text i metoden Encrypt(), tillgäng-

liga efter anropet. Texten är okrypterad före och krypterad efter anropet både i En-

crypt() och i Main(). Den andra parametern key däremot överförs med vanligt

värdeanrop – dvs med kopiering av värdena – eftersom denna parameter är

definierad till den enkla datatypen int. Efter Encrypt():s första anrop skrivs den

krypterade texten ut. Sedan anropas Encrypt() andra gången med -key, det ne-

gativa värdet av key, för att återställa texten som sedan skrivs ut för kontroll. Hur

krypteringsmetoden fungerar, förstår man bäst om man samtidigt tittar på metoden

Encrypt():

// EncryptChar.cs

// Tar emot en text via arrayen t och krypterar den genom att

// förskjuta alla tecken med n steg i teckentabellen

// Kontrollerar textens slut med arrayegenskapen Length

class EncryptChar

{
 public static void Encrypt(char[] t, int n)

 {
 for (int i = 0; i < t.Length; i++)

 t[i] = (char) (t[i] + n);

 }
}

Krypteringsmetoden är väldigt enkel: tecknens ASCII-värden ökas med n i satsen

t[i] = (char) (t[i] + n); genom vanlig addition. Att det verkligen adderas n

till ASCII-koden till t[i] beror på att t[i] är av typ char och att en tecken-

variabel i aritmetiska uttryck tolkas som sin ASCII-kod – ett tal man kan räkna

med. for-satsen som går igenom hela strängen genom att koppla loopens räknare

till arrayens index, gör att hela texten förskjuts med n steg i ASCII-tabellen. n får

sitt värde genom kopiering (värdeanrop) från key vid första och från –key vid

 140

andra anropet. key:s värde i sin tur slumpas fram i Main() med hjälp av Random-

metoden Next(). Dess anrop med parametrarna 1 och 501 gör att vi får ett slump-

värde som är ett heltal mellan 1 och 500 som sedan skickas som krypteringsnyckel

till Encrypt() via dess andra parameter. Vid andra anropet av Encrypt() skic-

kas –key för att återställa texten. Genom att ersätta t[i] + n med mer sofisti-

kerade formler kan man utveckla mer avancerade krypteringsalgoritmer.

Programmet EncryptCharTest kan köras på olika sätt. Varje körning ger en

annan slumpmässig krypteringsnyckel. Här ett exempel på en körning:

Skriv text som ska krypteras: abcdef

 Okrypterad text: abcdef

 Krypterad text: åæçèéê

 Återställd text: abcdef

Krypteringsnyckeln: 132

Man kan kontrollera krypteringen för hand: Man ser att bokstaven a förskjutits till

å. Krypteringsnyckeln har vid denna körning varit 132. ASCII-koden till a som är

97, har förskjutits 132 steg vidare till 97 + 132 = 229 som är koden till tecknet å.

Därför har a förskjutits till å med krypteringsnyckeln 132. På samma sätt görs det

med de andra tecknen i texten abcdef.

Självklart borde i en skarp applikation krypteringsnyckeln inte skrivas ut utan en-

dast sparas i variabeln key för att använda den vid återställningen. Vi gör det här

endast för experimentens skul.

Lägger man till filhantering i programmet EncryptCharTest kan samma metod

Encrypt() användas för kryptering av filer.

 141

4.3 Filhantering

Alla våra program hittills har haft en sak gemensam: Så snart vi avlutat program-

körningen har all data försvunnit från datorn utom programmets källkod som vi

sparat på hårddisken. Vi har efter exekveringen inte kunnat komma åt varken pro-

grammets in- eller output. Anledningen är att, när vi startar körningen, laddas både

källkoden och programmets variabler samt in- och utdata till datorns primärminne

RAM. När körningen är avslutad ”dör” all data i RAM. Ska utdata användas efteråt

måste den under körningen skickas till och sparas i filer. Samma sak gäller för in-

data: När dess mängd är så stor att den inte kan matas in från tangentbordet, måste

den läsas in från filer. På så sätt kan filhantering bli en nödvändighet.

// WriteReadFile.cs

// Skapar filen WriteRead.txt eller öppnar den om den finns.

// Raderar gammalt innehåll om filen redan finns.

// Skriver en text från programmet till filen, läser den

// sedan från samma fil och skriver ut den på skärmen.

using System;

using System.IO; // Krävs för StreamWriter

 // StreamReader

class WriteReadFile

{
 static void Main()

 {
 string word;

 StreamWriter fileForWrite = new StreamWriter

 ("WriteRead.txt"); // Objekt av klassen StreamWriter

 fileForWrite.WriteLine("\n\t\tDenna text är innehållet" +

 " i filen WriteRead.txt."); // Skriver texten till filen

 fileForWrite.Close(); // Skriver över gammalt innehåll

 StreamReader fileForRead = new StreamReader

 ("WriteRead.txt"); // Objekt av klassen StreamReader

 Console.WriteLine("\n\tFöljande text har skrivits " +

 " från programmet till filen.\n\n\t" +

 "Nu läses den från filen:\n");

 while (!fileForRead.EndOfStream) // Så länge filsluts-

 { // tecknet inte är nått
 word = fileForRead.ReadLine(); // ska en sträng läsas

 // från fileForRead och

 Console.WriteLine(word); // tilldelas word

 }
 fileForRead.Close();

 Console.WriteLine('\n');

 }
}

 142

Programmet WriteReadFile ovan skapar en fil eller öppnar den, om den redan

finns i projektmappen (t.ex. C:\C#\MyCsConsoleProj\bin\Debug), skriver en text i den

och läser sedan texten från filen samt visar innehållet. Programmet inleds bl.a. med

följande using-direktiv som behövs för att kunna använda filhanteringsklasser:

using System.IO;

IO står för Input/Output. De filhanteringsklasser från C# biblioteket som används i

programmet är StreamWriter för skrivning till filer och StreamReader för läs-

ning från filer. De innehåller metoder för skrivning till filer från ett C# program

(output) och inläsning från filer till ett C# program (input). Att det första heter out-

och det andra input beror på att man ser på det från C# programmets synvinkel. Då

innebär skrivning till fil output därför att data går från programmet till fil, medan

inläsning från fil innebär input därför att data går från fil till programmet. Utgångs-

punkten är alltid C# programmet, inte filen.

Att skriva till en fil

I programmet WriteReadFile definieras referensen fileForWrite i satsen:

StreamWriter fileForWrite = new StreamWriter("WriteRead.txt");

Det är en kraftfull sats. Vi ska gå igenom vad den gör: Variabeln fileForWrite

definieras som en referens till det nya objektet av klassen StreamWriter. Man

kan endast skriva ut data från programmet till en sådan fil, inte omvänt. Utgångs-

punkten för att bestämma ”riktningen” av out- och input är som sagt alltid C# pro-

grammet: output innebär utdata från programmet till en fil, medan input innebär in-

data från en fil till programmet.

Men vad gör parentesen ("WriteRead.txt")? Den anropar konstruktorn till

klassen StreamWriter. Observera att konstruktorns parameter tar emot en sträng

varför filnamnet måste skrivas inom citationstecken. Samtidigt som referensvaria-

beln fileForWrite definieras och tilldelas det nya StreamWriter-objektet,

initierar konstruktorn objektet till "WriteRead.txt": Ett logiskt, dvs programme-

ringstekniskt filnamn fileForWrite skapas och kopplas till det fysiska filnamnet

WriteRead.txt, en fil som antingen redan finns eller skapas på hårddisken. Det

som kompilatorn gör är att söka i projektmappens undermapp C:\C#\MyCsCon-

soleProj\bin\Debug efter en fil med detta namn. Om den finns där kommer

satsen ovan att radera filens innehåll utan förvarning när programmet WriteRead-

File exekveras. Samtidigt sätts filens markör i början av den tomma filen, redo

för att skriva i den. Om filen inte finns (i den nämnda mappen) kommer satsen att

skapa en fil med namnet WriteRead.txt, sätta markören i början av filen, redo

för att skriva i den.

Referensvariabeln fileForWrite används sedan för att skriva till filen med:

fileForWrite.WriteLine(

 "\n\t\tDenna text är innehållet i filen WriteRead.txt.");

 143

För första gången används här metoden WriteLine() inte efter Console. dvs in-

te för att skriva ut till konsolen, utan efter filvariabeln fileForWrite. Istället för

att skriva ut till konsolen skriver den ut till den fil som fileForWrite pekar på,

dvs till den fysiska filen WriteRead.txt.

Slutligen stängs filen med fileForWrite.Close(); Metoden close() är

definierad i den klass som fileForWrite refererar till dvs i klassen StreamWri-

ter. Den explicita stängningen av filen är av betydelse då den sätter filslutstecknet

som är avgörande för filens korrekta återanvändning. När man t.ex. senare vill läsa

från filen används ofta en loop vars avslutningskriterium är just detta filslutstecken

som representeras på olika sätt i olika operativsystem, t.ex. ctrl-z i Windows och

ctrl-d i Unix. I C# tar EndOfStream reda på om filslutstecknet är nått eller ej. Vi

kommer att använda oss av EndOfStream när vi läser från filen.

Att läsa från en fil

I programmet WriteReadFile definieras referensen fileForRead i satsen:

StreamReader fileForRead = new StreamReader("WriteRead.txt");

Ett nytt objekt skapas av klassen StreamReader, för input. Variabeln fileFor-

Read definieras som en referens till det nya objektet. Input innebär att man med

det här objektet endast kan läsa data från filen till programmet, inte omvänt. Sam-

tidigt initieras objektet till filen "WriteRead.txt" – samma fil som vi skrev till i

programmets första del. Markören sätts i början av filen, redo för att läsa från den.

Operationerna för inläsning är definierade i klassen StreamReader medan de för

skrivning finns i StreamWriter.

Sedan används while för att läsa från filen WriteRead.txt och skriva det lästa

till skärmen:
while (!fileForRead.EndOfStream)

{
 word = fileForRead.ReadLine();

 Console.WriteLine(word);

}

EndOfStream är en datamedlem av typ bool i klassen StreamReader och får

sanningsvärdet true när filslutstecknet påträffas, annars false. Så länge filsluts-

tecknet inte är nått, ska while-loopen fortsätta. När det är nått ska den avslutas.

Den logiska operatorn NEGATION ! kan sättas framför EndOfStream eftersom

det är av typ bool. Så länge EndOfStream är false ska while-loopen leda data-

strömmen från filen fileForRead till strängvariabeln word. Detta är innebörden i

satsen word = fileForRead.ReadLine(); Programmet läser data från filen

sträng för sträng, där mellanslag mellan strängarna i filen tolkas som avskiljare. In-

nan while-loopens nästa varv läser nästa sträng från filen och skriver över varia-

beln word:s värde skickas den aktuella strängen till skärmen.

 144

Efter läsning ska filen stängas på korrekt sätt med satsen fileForRead.clo-

se(); även om den inte återanvänds i detta program. En körning av WriteRead-

File ger följande utskrift:

 Följande text har skrivits från programmet till filen.

 Nu läses den från filen:

 Denna text är innehållet i filen WriteRead.txt.

Sedan kan man kolla att utskriftens tredje rad även finns i filen WriteRead.txt.

Det gör man genom att gå till mappen C:\C#\MyConsoleProj\bin\Debug och

WriteRead.txt öppna filen som finns där.

Append

Programmet WriteReadFile innehåller i den del som skriver till filen, följande

sats:

StreamWriter fileForWrite = new StreamWriter("WriteRead.txt");

Om filen WriteRead.txt redan finns i mappen C:\C#\MyConsoleProj\bin\-

Debug raderar satsen ovan filens innehåll utan förvarning varje gång programmet

exekveras. Vill man inte ha det så, utan önskar att filens gamla innehåll bibehålls

och det nya kommer till som ett tillägg, kan man med följande ändring åstadkom-

ma detta:

StreamWriter fileForWrite = new StreamWriter("WriteRead.txt",

 append:true);

Ändringen, dvs tillägget av 2:a parametern append:true i konstruktorns parame-

terlista gör att filen WriteRead.txt öppnas i s.k. append mode vilket innebär att

man kan lägga till data i filen utan att radera befintlig data.

Den syntax som används för konstruktorns 2:a parameter är ny för oss:

append:true

Parametern append är av typ bool. Dess värde i anropet ovan sätts till true.

Detta ändrar helt och hållet filskrivningens beteende: Markören sätts inte i början

utan i slutet av filen. Filens gamla innehåll överskrivs inte utan sparas. Märkören

lägger till ny text till den gamla. Filen växer. Detta beteende kan man testa i föl-

jande program:

 145

// AppendFile.cs

// Öppnar filen WriteRead.txt som skapades i programmet

// WriteReadFile utan att radera filens gamla innehåll.

// Lägger till text från programmet till filen, läser sedan

// hela innehållet från samma fil och skriver ut det.

using System;

using System.IO; // Krävs för StreamWriter och

class AppendFile // StreamReader

{
 static void Main()

 {
 String word;

 StreamWriter fileForWrite = new StreamWriter

 ("WriteRead.txt", append:true);

 // Objekt av klassen StreamWriter:

 // Bibehåller filens gamla innehåll

 fileForWrite.WriteLine("\n\t\tDenna text har lagts till"

 + " filen WriteRead.txt.");

 // Lägger till ny text till filen

 fileForWrite.Close();

 StreamReader fileForRead = new StreamReader

 ("WriteRead.txt");

 Console.WriteLine("\n\tFöljande text har skrivits " +

 " från programmet till filen.\n\n\t" +

 "Nu läses den från filen:\n");

 while (!fileForRead.EndOfStream)

 {
 word = fileForRead.ReadLine();

 Console.WriteLine(word);

 }
 fileForRead.Close();

 Console.WriteLine('\n');

 }
}

Resultatet är följande:

 Följande text har skrivits från programmet till filen.

 Nu läses den från filen:

 Denna text är innehållet i filen WriteRead.txt.

 Denna text har lagts till filen WriteRead.txt.

Den sista raden har kommit till i och med exekveringen av programmet Append-

File medan de tre första raderna härstammer från programmet WriteReadFile.

 146

”Skriv ett program som skriver till en fil med två kolumner. I den första

ska stå några användarnamn av typ user1, user2, … . I den andra ska

till varje användare stå ett slumpvis genererat lösenord med 8 tecken,

nämligen 3 små bokstäver, 2 siffror och 3 stora bokstäver. Programmet

ska sedan visa filens innehåll.”

4.4 Slumplösenord

Det är var och en systemadministratörs önskemål att snabbt kunna få en lista över

ett antal användarnamn samt slumpvis genererade lösenord som följer en viss poli-

cy, för att dela ut dem till sina användare. När lösenorden är slumpade är det prak-

tiskt taget omöjligt att hantera dem utan att spara dem i en fil. Detta för att effektivt

kunna administrera och dela ut konton med användarnamn och lösenord till alla an-

vändare. För att kunna göra det behövs en lösenordspolicy som ingår t.ex. i föl-

jande problemställning:

Problemet:

Lösningen:

// RandPasswdTest.cs

// Skapar en fil, skriver i den ett antal användarnamn och

// slumpvis genererade lösenord med metoden RandPasswd()

// Läser sedan från samma fil och skriver ut innehållet

using System;

using System.IO;

class RandPasswdTest

{
 static void Main()

 {
 char[] password = new char[8];

 Random r = new Random();

 string word;

 Console.Write("\n\tHur många användarnamn med lösenord "

 + "vill du ha? ");

 int number = Convert.ToInt32(Console.ReadLine());

 StreamWriter fileForWrite = new StreamWriter

 ("userPasswd.txt");

 for (int i=1; i <= number; i++)

 {
 RandPasswd.OnePassword(r, password); // Slumplösenord

 fileForWrite.WriteLine("\tuser" + i + // Skrivs till fil

 "\t\t" + new String(password));

 }
 fileForWrite.Close();

 147

 StreamReader fileForRead = new StreamReader

 ("userPasswd.txt");

 Console.WriteLine("\n\tVarsågod, detta står nu" +

 " i filen userPasswd.txt:\n");

 while (!fileForRead.EndOfStream)

 {
 word = fileForRead.ReadLine(); // Läses från fil

 Console.WriteLine(word); // Skrivs till skärm

 }
 fileForRead.Close();

 Console.WriteLine();

 }
}

Lösningen består av programmet ovan samt klassen RandPasswd på nästa sidan. I

den första med vit bakgrund framhävda raden kopplar programmet RandPasswd-

Test filvariabeln fileForWrite till den fysiska filen "userPasswd.txt". Så al-

la inloggningsuppgifter kommer att hamna i denna fil. I den andra med vit bakgrund

framhävda raden anropas metoden EttLösenord() från klassen RandPasswd,

vilket genererar ett slumplösenord. Sedan skrivs till filen med följande sats:

fileForWrite.WriteLine("\tuser" + i +

 "\t\t" + new String(password));

Både anropet och denna sats är inbyggda i en for-loop där räknaren i går från 1

till number användare man matar in vid körning. Intressant ur en programmerings-

teknisk synpunkt är nu den i satsen ovan med grå bakgrund framhävda koden.

Frågan är: Varför kan man inte bara enkelt skriva password i koden för att få ut

strängen som representerar slumplösenordet som genererats av metoden OnePass-

word()? Anledningen är att password endast är en referens till en char-array

och inte en sträng, ja inte ens själva arrayen. Detta kan man se när man tittar på den

sats som i början av programmet definierar password:

char[] password = new char[8];

För att få ut den char-array som password refererar till, som en sträng, måste vi

skapa ett strängobjekt med samma referens som pekar på char-arrayen. Annars –

om vi bara skriver password – får vi endast ut referensen. Därför: new String-

(password). Testa gärna för att se vad du får i utskriften.

I den tredje med vit bakgrund framhävda raden kopplar programmet RandPass-

wdTest filvariabeln fileForRead till en filtyp för input och initieras till samma

fil som vi skrev till. För läsning från filen till skärmen används samma while-loop

som i programmet WriteReadFile (sid 141).

Det ursprungliga målet var ju att skriva en lista över användarnamn och lösenord

till filen userPasswd.txt för att dela ut konton. Lösenorden kan initialt vara vad

 148

som helst, bara de följer en policy med vissa säkerhetskrav. Sedan kan användarna

efter den första inloggningen själva bestämma sina individuella lösenord. Följande

metod som i programmet RandPasswdTest anropas i samma for-sats som skri-

ver till filen, löser problemet. Direkt efter anropet sparas användarnamn och lösen-

ord i filen.

// RandPasswd.cs

// Genererar ETT slumplösenord med policyn:

// 8 tecken = 3 små bokstäver: ASCII-intervall (97, 122) +

// 2 siffror (48, 57) +

// 3 stora bokstäver (65, 90)

using System;

class RandPasswd

{
 public static void OnePassword(Random r, char[] p)

 {
 for (int i=0; i < 3; i++)

 p[i] = (char) r.Next(97, (122 + 1)); // 3 små

 // bokstäver

 for (int i=3; i < 5; i++)

 p[i] = (char) r.Next(48, (57 + 1)); // 2 siffror

 for (int i=5; i < 8; i++)

 p[i] = (char) r.Next(65, (90 + 1)); // 3 stora

 } // bokstäver

}

Metoden tar emot en array av char och tilldelar dess 3 första element – vars index

är 0, 1, och 2 – tecken som slumpvis tas ur ASCII-intervallet (97, 122). En blick i

ASCII-tabellen (Progr1, 3.3) visar att det är tecknen a, b, c, ..., z dvs det

engelska alfabetet i gemener. Den här tilldelningen kan göras med en for-sats

eftersom det engelska alfabetet finns sammanhängande i ASCII-tabellen.

Det 4:e och 5:e elementet – med index 3 och 4 – tilldelas slumpvis ett tecken ur

ASCII-intervallet (48, 57). Enligt ASCII-tabellen är det siffrorna 0-9.

De 3 sista elementen, dvs element nr 6, 7 och 8 – med index 5, 6 och 7 – tilldelas

något av tecknen i ASCII-intervallet (65, 90). Det är tecknen A, B, C, ..., Z

dvs det engelska alfabetet i versaler.

I alla intervall ingår även gränserna därför att metoden Next() som anropas här

flera gånger, även inkluderar intervallgränserna vid slumptalsgenereringen.

Metoden OnePassword() anropas i programmet RandPasswdTest i den for-

sats som skriver till filen. Därvid skickas två parametrar. Den första är referensen r

till Random-objektet som skapas i början av programmet. Det är nödvändigt för att

metoden OnePassword() ska kunna anropa Random-metoden Next() som ska-

par slumptal. Den andra parametern är password som pekar på en char-array av

 149

längden 8. I metoden tas den emot av referensen p av samma typ och initieras där.

Efter anropet är arrayen även initierad i Main() pga referensanrop. Så hamnar

innehållet – ett slumplösenord av 3 gemener, 2 siffror och 3 vesaler – i filen.

Ett körresultat av programmet RandPasswdTest kan se ut så här:

 Hur många användarnamn med lösenord vill du ha? 20

 Varsågod, detta står nu i filen userPasswd.txt:

 user1 oya00GDB

 user2 vjb54XVL

 user3 zae83HHS

 user4 jdl84YLE

 user5 tja91QGS

 user6 noe52ZGC

 user7 jqs54CDG

 user8 qhs88HQX

 user9 ywt18WIJ

 user10 uli71UMJ

 user11 wim72WSR

 user12 guj89KXG

 user13 ygp32DFN

 user14 hjv07KCV

 user15 viz47VSC

 user16 ecx04MLK

 user17 nbv82CET

 user18 czn80QXV

 user19 rna53KMC

 user20 onf12DAU

Samtidigt skapas filen userPasswd.txt på hårddisken i projektmappens under-

mapp C:\C#\MyProject\bin\Debug med ovanstående listan över 20 användar-

namn och lösenord som innehåll. Vill man placera filen på en annan plats på hård-

disken, måste i den sats som skapar filen, sökvägen till denna plats anges:

StreamWriter fileForWrite =

 new StreamWriter("C:\\ ... \\userPasswd.txt");

Sökvägen ... måste börja med diskens enhetsbokstav om man väljer absoluta

sökvägar. Men även relativa sökvägar av typ ..\\userPasswd.txt är möjliga

som placerar filen t.ex. i mappen strax ovanför den aktuella mappen. Självklart

borde samma sökväg anges senare i programmet i den sats som läser filen. Anled-

ningen till användningen av \\ i sökvägen är att \ är reserverad för escapesekven-

sernas inledningssymbol. För själva tecknet \ inom en sträng måste escapesekven-

sen \\ användas (Progr1, 3.4).

 150

4.5 Kryptering av filer

Tidigare behandlades kryptering av text (sid 135 och 138). De verktyg som

utvecklades där kan med fördel användas för att kryptera även filer, nu när vi lärt

oss att hantera filer. För avväxlingens skull presenterar vi först körresultatet av ett

filkrypteringsprogram som vi sedan tar upp och och går igenom koden:

 Okrypterad fil:

This text is coming from a file called OriginalText.txt.

The C# program EncryptFile reads it from the hard disk, encrypts

the content and writes the encrypted text to the file Encrypted.txt.

In order to test the encryption, the program decrypts the text

and writes the recovered text to the file Recovered.txt.

At the same time the content of the files are displayed.

 Krypterad fil:

¢¶·ÁnÂ³ÆÂn·Án±½»·¼µn´À½»n¯n´·º³n±¯ºº³²n?À·µ·¼¯º¢³ÆÂ|ÂÆÂ|n[X¢¶³n?qn¾À½

µÀ¯»n?¼±ÀÇ¾Â?·º³nÀ³¯²Án·Ân´À½»nÂ¶³n¶¯À²n²·Á¹zn³¼±ÀÇ¾ÂÁn[XÂ¶³n±½¼Â³¼Ân

¯¼²nÅÀ·Â³ÁnÂ¶³n³¼±ÀÇ¾Â³²nÂ³ÆÂnÂ½nÂ¶³n´·º³n?¼±ÀÇ¾Â³²|ÂÆÂ|n[X?¼n½À²³ÀnÂ

½nÂ³ÁÂnÂ¶³n³¼±ÀÇ¾Â·½¼znÂ¶³n¾À½µÀ¯»n²³±ÀÇ¾ÂÁnÂ¶³nÂ³ÆÂn[X¯¼²nÅÀ·Â³ÁnÂ¶³

nÀ³±½Ä³À³²nÂ³ÆÂnÂ½nÂ¶³n´·º³n ³±½Ä³À³²|ÂÆÂ|n[X?ÂnÂ¶³nÁ¯»³nÂ·»³nÂ¶³n±½¼

Â³¼Ân½´nÂ¶³n´·º³Án¯À³n²·Á¾º¯Ç³²|[X

 Återställd fil:

This text is coming from a file called OriginalText.txt.

The C# program EncryptFile reads it from the hard disk, encrypts

the content and writes the encrypted text to the file Encrypted.txt.

In order to test the encryption, the program decrypts the text

and writes the recovered text to the file Recovered.txt.

At the same time the content of the files are displayed.

 Krypteringsnyckeln: 78

Det här är bara ett av flera möjliga körresultat man kan få när man kör programmet

EncryptFile (sid 151), därför att krypteringsnyckeln slumpas fram och kan därför

vara olika vid varje körning. Just här vid den aktuella körningen är den 78. Samma

teknik användes när vi krypterade text. Skillnaden är att vi nu använder filer som

källa och mål för texten som ska krypteras. Programmet EncryptFile som gene-

rerar utskriften ovan och visas på nästa sida, slumpar först fram ett heltal som an-

vänds som krypteringsnyckel – vi kallar det i fortsättningen kort slumpnyckel.

Programmet EncryptFile som visas nedan, är i högsta grad modulariserat och

består av följande klasser:

EncryptFile innehåller Main() som anropar alla andra metoder

EncryptText metoden Encrypt() som krypterar text

WriteFile metoden Write() som skriver text till en fil

ReadShowFile metoden ReadShow() som läser en fils innehåll och visar

 det på skärmen

 151

// EncryptFile.cs

// Läser text från en fil, krypterar den med en slumpnyckel,

// skriver den krypterade texten till en annan fil och visar

// den. Dekrypterar sedan texten och skriver den till en 3:e

// fil samt visar både den återställda filen och slumpnyckeln

// Slumpnyckeln ger vid varje körning en annan kryptering

using System;

using System.IO;

class EncryptFile

{
 static void Main()

 {
 Console.WriteLine("\n\tOkrypterad fil:\n");

 string fileText = ReadShowFile.ReadShow

 ("OriginalText.txt");

 Random r = new Random();

 int key = r.Next(50, 251); // Slumpnyckeln

 fileText = EncryptText.Encrypt(fileText, key);// Krypte-

 // rar med slumpnyckel

 WriteFile.Write(fileText, "Encrypted.txt"); // Skriver

 // till filen Enc…

 Console.WriteLine("\tKrypterad fil:\n");

 fileText = ReadShowFile.ReadShow("Encrypted.txt");

 fileText = EncryptText.Encrypt(fileText, -key);

 // Dekrypterar med negativ slumpnyckel

 WriteFile.Write(fileText, "Recovered.txt"); // Skriver

 // till filen Rec…

 Console.WriteLine("\tÅterställd fil:\n");

 fileText = ReadShowFile.ReadShow("Recovered.txt");

 Console.WriteLine("\tKrypteringsnyckeln:\t" + key +

 "\n");

 }
}

I Main() finns endast variabeldefinitioner och anrop av de externlagrade metoder

vilka gör det egentliga jobbet, nämligen slumptalsgenereringen, filläsningen, filvis-

ningen, krypteringen och filskrivningen. I början av Main() skapas string-ob-

jektet fileText för att lagra filens innehåll. Det kan inte förutsägas hur stor filen

är som ska krypteras, men det spelar ingen roll. Vi har förbrett en liten textfil, döpt

den till OriginalText.txt och lagt den i projektmappens undermapp C:\C#\-

MyProject\bin\Debug. I följande sats anropas metoden ReadShow() som är

definierad i den separata klassen ReadShowFile:

string fileText = ReadShowFile.ReadShow("OriginalText.txt");

 152

Anropet läser filen OriginalText.txt och returnerar innehållet till string-ob-

jektet fileText. Sedan låter vi metoden Next() – från biblioteksklassen Random

– generera ett slumptal mellan 50 och 250 som tilldelas variabeln key, slump-

nyckeln som används vid kryptering. Därför skickas den tillsammans med file-

Text till Encrypt() med anropet som ingår i följande sats:

fileText = EncryptText.Encrypt(fileText, key);

En blick på metoden Encrypt() som är externlagrad i klassen EncryptText

förklarar saken:

// EncryptText.cs

// Metoden Encrypt() tar emot en sträng och krypterar den

// genom att förskjuta alla tecken med n steg i teckentab.

// Den krypterade strängen skrivs teckenvis till platsen temp

// Sedan returneras den krypterade strängen från metoden

using System;

class EncryptText

{
 public static string Encrypt(string t, int n)

 { // t = filinnehåll
 char ch;

 string temp = ""; // Initierar temp

 for (int i=0; i <= t.Length-1; i++)

 {
 ch = (char)(t[i] + n); // Ändrar tecknen från t

 temp += ch; // Lägger tecknen i temp

 }

 return temp; // Reurnerar krypterat

 } // filinnehåll

}

Med den första parametern t får metoden Encrypt() tillgång till det string-ob-

jekt som skapas i den anropande metoden Main(). Adressen till detta objekt ko-

pieras över till referensvariabeln t när Encrypt() anropas. Samma sak sker med

krypteringsnyckeln vars värde kopieras till den andra parametern n. Sedan har vi i

kroppen av metoden två lokala variabler ch och temp. Den första som är av typ

char initieras i for-loopen och lagrar det krypterade tecknet för att slutligen över-

föra det via konkatenering till strängen temp. for-satsen går igenom alla tecken i

t genom att initiera sin räknare i till 0 och avsluta loopen när räknaren har nått

strängens sista tecken. Att man börjar med 0 beror på att C# räknar strängens första

tecken med index 0, det andra med index 1 osv. så att det sista tecknet får t.ex.

index 25 om strängen innehåller 26 tecken. Length är en string-egenskap som

ger antalet tecken i strängen, här t. Därför har vi i for-loopen avslutningsvillkoret

i <= t.Length - 1. I varje varv av den läggs det uttagna tecknet från t i den

lokala char-variabeln ch och görs om till ett nytt tecken med satsen ch = (char)

 153

(t[i] + n); där tecknet ch:s Unicode adderas med heltalet n. Resultatet om-

vandlas med explicit typkonvertering till char för att sedan tilldelas ch. Utan

explicit typkonvertering skulle vi få kompileringsfel pga C#:s vägran att automa-

tiskt typomvandla nedåt från int till char. for-loopens sista sats bygger den

krypterade strängen temp som efter for returneras när Encrypt() anropas två

gånger i Main() – en gång för kryptering, en andra gång för dekryptering (fram-

hävda med vit bakgrund i koden på sid 151).

Den andra gången anropas krypteringsmetoden i följande sats:

fileText = EncryptText.Encrypt(fileText, -key);

där tecknet – framför key inte ska tolkas som bindestreck utan som det matema-

tiska förtecknet minus till variabeln key:s talvärde, där key är deklarerad som hel-

tal av typ int. Vi skickar alltså key:s negativa värde till samma krypteringsmetod

Encrypt() för att sätta tillbaka alla tecken på sina ursprungliga platser i ASCII-

tabellen. Den aktuella parametern key öveförs vid anrop till den formella parame-

tern n. När n får ett positivt key-värde, ökas tecknens ASCII-kod med n. Ett nega-

tivt key-värde minskar ASCII-koderna med samma belopp. Därför kan vi använda

samma metod även för dekryptering.

Men mellan de två anropen av Encrypt() – en gång för kryptering, en gång för

dekryptering – har vi två andra anrop, först:

WriteFile.Write(fileText, "Encrypted.txt");

som skriver den krypterade texten fileText till filen Encrypted.txt. Den anro-

pade metoden Write() är definierad i den externlagrade klassen WriteFile:

// WriteFile.cs

// Metod som skriver texten t till filen filnamn

using System.IO;

class WriteFile

{
 public static void Write(string t, string filnamn)

 {
 StreamWriter fileForWrite = new StreamWriter(filnamn);

 fileForWrite.WriteLine(t);

 fileForWrite.Close();

 }
}

Det andra anropet mellan de två anropen av Encrypt() sker i satsen:

fileText = ReadShowFile.ReadShow("Encrypted.txt");

 154

Anropet läser den krypterade texten från filen och visar den på skärmen. Resultatet

kan beskådas på sid 150 och visar att filen verkligen är krypterad. Den anropade

Metoden ReadShow() är definierad i den externlagrade klassen ReadShowFile:

// ReadShowFile.cs

// Metod som läser innehållet i filen filnamn, visar det på

// skärmen och returnerar filinnehållet som en sträng

using System;

using System.IO;

class ReadShowFile

{
 public static string ReadShow(string filnamn)

 {
 string word, temp = "";

 StreamReader fileForRead = new StreamReader(filnamn);

 while (!fileForRead.EndOfStream)

 {
 word = fileForRead.ReadToEnd();

 Console.WriteLine(word);

 temp += word;

 }
 fileForRead.Close();

 return temp;

 }
}

Metoden ReadToEnd() i while-satsen som är fördefinierad i klassen Stream-

Reader läser filen filnamn ord för ord, lagrar innehållet i string-variabeln

word. EndOfStream i while-satsens villkor flyttar markören till nästa tecken i fi-

len och returnerar true om det finns ord kvar och false om det stöter på filslut-

tecknet. Så läses filen till slutet, lagras i word samt samlas i temp.

Nu återstår beviset på att krypteringen gjorts på ett sätt att vi alltid har möjligheten

att återställa filen och att vi verkligen får filens ursprungliga skick. Efter det andra

anropet av krypteringsmetoden med negativ slumpnyckel skrivs den återställda

texten till filen Recovered.txt med följande anrop:

WriteFile.Write(fileText, "Recovered.txt");

Och med följande anrop läses den återställda texten från samma fil och skrivs ut på

skärmen:

fileText = ReadShowFile.ReadShow("Recovered.txt");

Resultatet kan beskådas i den sista delen av utskriften på sid 150. Man ser att den

ursprungliga texten från filen OriginalText.txt är helt återställd. T.o.m. rad-

brytningarna är på plats i den återställda versionen, däremot inte synliga i krypte-

ringen.

 155

Övningar till kap 4

4.1 Skriv ett program som läser in en sträng, lagrar den i en array av char och

skriver ut den baklänges. Använd tekniken i programmet EncryptChar-

Test (sid 138) för att omvandla den inlästa strängen i en array av char.

4.2 Skriv ett program som skapar en tom fil, skriver i den texten ”Den här texten

kommer från mitt första C# filhanteringsprogram” och sedan läser från den

samt skriver ut innehållet på skärmen. Som mall kan du ta programmet -

WriteReadFile (sid 141) och modifiera den.

4.3 Modifiera programmet från övn 4.2 ovan: Istället för att hårdkoda texten i

programmet, läs in den så att programmet skriver vilken inläst text som helst

till filen och läser den sedan därifrån.

4.4 Varje gång man kör programmen från övn 4.2 eller 4.3 efter första gången,

rensas och återställs filen och endast den senaste texten hamnar i den. Skriv

ett program som gör samma sak som övn 4.2 men bibehåller filens gamla

innehåll och lägger till den nyinlästa texten utan att radera gammal data. Du

kan åstadkomma det genom att öppna filen i append mode.

4.5 Modifiera klassen RandPasswd (sid 148) som genererar ett slumplösenord,

genom att använda en annan, ny lösenordpolicy: 3 gemener, 2 versaler (samt

? och @) och 2 specialtecken. Testa den nya policyn i programmet Rand-

PasswdTest (sid 146) för att skriva ut de nya slumplösenorden samt tillhö-

rande användarnamn till en fil.

4.6 Kryptering av fil (Projekt) Modifiera klassen EncryptText (sid 152)

genom att implementera följande ny krypteringsmetod. Gör så här:

 Döp om klassen EncryptText till en ny klass EncryptText_New.

 Döp om krypteringsmetoden Encrypt(string t, int n) till

 Encrypt_New (string t, int k, int m).

 Definiera krypteringen i den nya metoden med funktionen y = k x + m,

 dvs ersätt satsen t[i] = (char) (t[i] + n);

 med t[i] = (char) (k*t[i] + m);

 Lägg till en ny metod Decrypt(string t, int k, int m) som ska de-

kryptera tecknen med den inversa funktionen y = (x - m) / k , dvs:
 t[i] = (char) ((t[i] - m)/k);

 Anropa båda metoderna från Main() genom att skicka värdena 3 till k

och -40 till m. Krypteringsfunktionen blir då y = 3 x - 40 och dekrypte-

ringsfunktionen y = (x + 40) / 3.

 156

 I övrigt ska all skrivning till och läsning från fil kodas precis som i det

 ursprungliga programmet EncryptFile (sid 151).

4.7 Kryptering av databas (Projekt) Skriv ett program som krypterar en

redan existerande databastabell i Access som ingår i Microsofts Office-paket

vilket förutsätter att du har tillgång till programvaran. I så fall skapa i Ac-

cess en liten tabell, t.ex. ett adressregister över dina kompisar och exportera

tabellen till en textfil av typ *.txt (Arkiv  Exportera  Filformat *.txt, …).

Välj vid exporten semikolonet som avskiljare mellan tabellens kolumner.

Kryptera textfilen med något av programmen i detta kapitel. Men lägg till

kod som gör att semikolonet inte krypteras. Skriv det krypterade innehållet

till en annan textfil. Importera textfilen till en ny tabell i Access. Spara kryp-

teringsnyckeln och använd den för att återställa den krypterade tabellen och

verifiera resultatet.

 157

Kapitel 5

Datastrukturer i relationsdatabaser

 Ämne Sida Program/Länk

5.1 Introduktion till databaser 158
5.2 Relationsdatabaser 160

­ Modularisering 160

­ Liknelse med klass och objekt 162

­ Vad är en relation i databaser? 163

­ Primär- och främmande nycklar 167
5.3 Introduktion till SQL 168

­ Databashanterare 168

­ Klient – Server-modellen 169

­ SQL – databasers språk 171

­ SELECT-satsen 172

­ CREATE TABLE-satsen 177
5.4 Vår första SQL Server databas 179 FirstDatabase

­ Att koppla upp sig till SQL Servern 180

­ Att visa databasens innehåll 183
5.5 En SQL klient i C# 185 SQLclient

­ Att skriva och exekvera egna SQL satser 187

­ Grafiskt gränssnitt till SQL klienten 192
5.6 Att skapa och designa en databas i C# 197 Kursverksamhet

­ Modelldatabasen Kursverksamhet 198

­ Att skapa tabeller i databasen 199

­ Att koppla projektets Dataset till databasen 202

­ Att skapa relationer mellan tabeller 205

­ Att lägga in data i tabellerna 207
5.7 Att förse databasen med funktionaliteter 210 AddressBook

Övningar till kapitel 5 216

 158

5.1 Introduktion till databaser

Information som samlas och lagras på ett ställe för att kunna användas senare, ge-

nererar en databas. Stället där informationen samlas behöver inte vara en dator. En

samling papper eller kort med viktig information som man förser med namn eller

nummer så att de kan sorteras, kan göra samma tjänst. Förr i tiden förvarades sådan

information i tunga, låsbara arkivskåp av massiv järn, för att säkra informationen

mot olovlig användning, inbrott, eld osv. (se bilden ovan). Arkivskåpet kunde inne-

hålla information om t.ex. delbetalande kunders skulder i ett varuhus, sjukvårds-

journal i ett sjukhus, låneböcker i ett bibliotek, register över elevärenden i en skola,

medlemsregister i en förening eller kund- resp. varuregister i ett företag. Idag är

databaser bakom webbsidor av stort intresse, där uppdaterbar information lagras.

Datoriseringen har gjort att arkivskåpet gått till historien för gott. Idag finns det in-

get effektivare medium för lagring av information än datorn. Men varken mediet

eller den lagrade informationen i sig har någon egentlig betydelse, när det gäller

effektivitet. Det enda som räknas är informationens struktur, dvs hur information

lagras. Strukturen avgör hur man hittar information man är ute efter. Strukturen av-

gör hur lagringen av information är organiserad från början. Man pratar om data-

basens modell. Avgörande är den modell man tillämpat när man skapade databa-

sen. Det finns olika databasmodeller, se nästa sida. Bland dem har relationsdata-

basmodellen visat sig vara både mest effektiv och enklast att underhålla.

Själva begreppet databas används i många olika sammanhang. I minst två av dem

kan man precisera betydelsen av databas så här:

1. en samling av information i form av tabeller, relationer, nycklar och andra da-

tabasobjekt (vyer, sekvenser, index, …), t.ex. HR-databasen (sid 218).

2. en programvara som hanterar databaser, en s.k. databashanterare (sid 168),

t.ex.: SQL Server, Access, MySQL, Oracle, DB2, ….

 159

Olika databasmodellerOlika databasmodeller

Hierarkisk databas:Hierarkisk databas: Samling av filer och mappar i trSamling av filer och mappar i träädstruktur.dstruktur.

NNäätverksdatabas:tverksdatabas: Samling av filer och mappar i nSamling av filer och mappar i nåågon annan topologi.gon annan topologi.

Hierarkisk databasHierarkisk databas

RelationsdatabasRelationsdatabas

NNäätverksdatabastverksdatabas

Design

Implementation

Dessa tre databasmodeller har bl.a. använts sedan datoriseringen av databaser. Det

är inte ens idag ovanligt att folk samlar information i filer och lagrar filerna i map-

par. Så länge mängden av data håller sig inom en viss gräns är det inte heller något

fel med det, så länge man hittar den information man sedan letar efter.

Under åren har de hierarkiska databaserna växt fram, helt oplanerat och spontant.

Hierarkiska heter de eftersom filerna läggs i mappar organiserade i en trädhierarki

liknande mappsystemet i de flesta operativsystemen (Windows, Linux, Unix, …).

Nätverksdatabasmodellen liknar de olika topologier som förr i tiden fanns i de da-

tornätverk som byggdes med kablar (Buss, ring, stjärna, …). Både den hierarkiska

och nätverksdatabasmodellen används inte längre för lagring av stora datamängder.

Anledningen är att relationsdatabasmodellen i praktiken har visat sin överlägsen-

het. Vi kommer snart att inse detta. I fortsättningen kommer vi att endast ha att

göra med denna databasmodell vars principer vi börjar att lära oss i detta kapitel.

Relationsdatabasmodellen

1970 introducerade Codd, forskare inom datavetenskap på IBM, denna modell i sin

doktorsavhandling ”A Relational Model of Data for Large Shared Data Banks”.

Han kallade sin modell för en relationsmodell, för den bygger på begreppet rela-

tion som vi kommer att behandla på sid 163. Relationsdatabasmodellens fördelar är

så stora att de flesta databaser i världen idag är relationsdatabaser. De överträffar

alla andra modeller med avseende på:

 Effektivitet

 Tillförlitlighet

 Stabilitet

Det är anmärkningsvärt att databasspråket SQL (sid 171) utvecklades samtidigt av en

annan forskargrupp på samma företag IBM och är logiskt uppbyggt på samma prin-

ciper som relationsdatabaser och fungerar bäst med dem.

 160

5.2 Relationsdatabaser

Relationsdatabasmodellens minsta byggsten (modul) är tabellen. Intuitivt har man

en någorlunda klar uppfattning om en tabell som en samling av rader och kolum-

ner. Lite svårare är det att inse att en tabell kan definieras som en relation mellan

mängder, där relation själv också är en mängd (sid 163). Kopplingen mellan tabell

och relation är inte intuitiv. För att förstå den måste vi reda ut andra begrepp.

Modularisering

Ett av dessa begrepp är modularisering – ett koncept som används i all problemlös-

ning, bl.a. i programmering. Modularisering används för att bryta ned stora pro-

gram i mindre och enklare hanterbara moduler för att åstadkomma bättre strukture-

ring samt effektivitet, t.ex. genom återanvändning av kod. I databassammanhang

innebär modularisering att man samlar information om ett nyckelbegrepp (en kate-

gori av saker och ting, en s.k. entitet) endast i en tabell och inte blandar data av oli-

ka typer i en och samma tabell. Har man t.ex. i ett företag data om anställda och

avdelningar ska man inte samla dem allihopa i en tabell, utan skapa en tabell för

anställda och en annan för företagets avdelningar. Vilka fördelar denna princip av

relationsdatabasmodellen har kommer att visas längre fram (sid 165, 166).

Modularisering – att separera databasens tabeller i fristående moduler – har vissa

konsekvenser. En av dem är att en viss information i, säg tabell A, inte längre är di-

rekt tillgängling i samma tabell utan har lagrats i en annan tabell B. T.ex. finns i ta-

bellen över anställda (A) inte namnet på den avdelning de jobbar, för tabellen över

avdelningar (B) har separerats från A. För att ändå kunna komma åt anställdas av-

delningar måste en relation etableras mellan A och B. Detta leder till att man måste

införa nycklar, närmare bestämt Primär- och främmande nycklar (sid 167). Nyck-

larna beskriver relationen mellan tabellerna. På så sätt blir databasen en samling av

relationer och därmed en relationsdatabas.

 161

Att relationsdatabasmodellens minsta modul är tabell föranleder oss att närmare

titta på dess beståndsdelar: rader och kolumner. Ibland kallar man raderna även för

poster, och kolumnerna för fält. Vi kommer dock att hålla oss till rader och kolum-

ner. De har fått vissa roller som återspeglar deras funktionaliteter. Vi ska precisera:

En rad i en tabell t.ex. om ett företags avdelningar (tabelltypen) får endast inne-

hålla information om en speciell avdelning: Avdelningens namn, ort, postnr, gatu-

adress, etableringsdatum osv. Raden utgör ett exemplar (objekt) av typen (katego-

rin, klassen) Avdelningar.

En kolumn däremot får endast innehålla information till en kolumnrubrik. T.ex.

rubriken postnr kan ha talet 18047 som värde, rubriken avdelningsnamn kan ha tex-

ten IT eller etableringsdatum datumet 02-JAN-08. Alla värden i en kolumn måste

vara samma typ av data, antingen tal, text, datum eller någon annan typ av data.

Därför måste en kolumn ha en datatyp. På vissa rader kan information saknas. Då

blir det en tom cell i kolumnen, och man säger att denna cell innehåller NULL – ett

ofta förekommande nyckelord i databassammanhang som betyder ingen informa-

tion och som inte borde förväxlas med talet 0 som är information.

Medan en kolumn alltid måste ha ett namn (rubriken) som den entydigt kan identi-

fieras med, behöver en rad inte a priori ha ett sådant. Man kan dock ge den en iden-

tifieringsnyckel i form av ett nummer i en extra kolumn eller en nummerkombina-

tion i flera kolumner för att kunna hitta den i tabellen, vilket är rekommenderat att

göra. Denna nyckel kallas tabellens primärnyckel och får inte innehålla varken

dubbletter eller NULL (sid 167).

Ytterligare en skillnad mellan rader och kolumner är deras ordning. Medan kolum-

nerna har en fast ordning i tabellen, är radernas ordning odefinierad. I vissa samman-

hang kan man t.o.m. referera till en kolumn genom att använda dess plats i tabellen,

t.ex. kolumn nr 1 eller 2 osv. istället för att ange kolumnrubriken. Raderna däremot

är oordnade.

Tabell: rader & kolumner

Rad (post)

• Innehåller all data till ett exemplar av tabelltyp, t.ex.

all information om en anställd i tabellen Anställda.

• Kan identifieras med ett unikt värde resp. en unik

värdekombination (primärnyckeln, se 4 sid vidare).

• Ordningen i tabellen är inte definierad, obestämd.

Kolumn (fält)
• Innehåller en typ av information om varje rad i tabellen.

• Måste ha ett namn = kolumnhuvudet = kolumnrubriken

• Måste ha en datatyp. Kan ha NULL i vissa poster.

• Har en position i tabellen: Ordningen är definierad.

 162

Employee

- firstName

- lastname

- birthDate

- hireDate

- workingHour

+ Salary()

+ Present()

+ MorningActivity()

Låt oss titta på klassdiagrammet till hö-

ger. Om vi bortser från metoderna (mar-

kerade med +) och koncentrerar oss på da-

tamedlemmarna (markerade med –) kan vi

jämföra klassen Employee med en tom

tabell vars kolumner är klassens data-

medlemmar, se nedan. Tabellens struktur

är identisk med klassens struktur när det

gäller datamedlemmarna, vilket ger oss

en ledtråd om hur vi ska bygga våra ta-

beller. Klassens metoder kommer att bli

funktionaliteter som sedan måste läggas till med kod.

Förnamn Efternamn Födelsedatum Anställn.datum Arbetstid

Tabellen borde döpas till Employees. Just nu är den tom. Men när vi lägger in

några anställda i den motsvarar detta att skapa objekt av klassen Employee. Varje

cell i en sådan rad innehåller information om just denna anställd, vilket kan jämfö-

ras med de värden som man skickar med konstruktorn när man med new skapar ett

objekt av klassen Employee. Objektet initieras med dessa värden. När tabellen se-

dan växer innebär det att man skapar ytterligare objekt av samma klass, dvs lägger

in flera anställda i tabellen. I en relationsdatabas borde man lägga till tabellen ovan

en kolumn bestående av t.ex. ett löpande nummer (utan dubbletter) som ska sedan

fungera som tabellen Employees’ primärnyckel (sid 167). Primärnyckeln kan jäm-

föras med objketets (radens) namn och är till för att på ett entydigt sätt kunna iden-

tifiera raden och kunna relatera tabellen till databasens andra tabeller. Sådana rela-

tioner behandlas på de följande 4 sidorna.

 163

Begreppet relation har sitt ursprung i mängdläran där man betraktar mängder av

saker och ting (föremål, objekt) – reella eller virtella – och definierar operationer

mellan dem (union, snitt, …). Varje operation genererar en ny mängd. Läs mer om

operationer mellan mängder i avsnittet 2.5 Mängdlära och logik på sid 78. I data-

bassammanhang är mängdbegreppet av intresse därför att vi har att göra med

mängder av data och med relationer mellan dem. De saker och ting som ingår i en

mängd kallas element. En kolumn i en tabell kan anses som en mängd av sina cel-

ler. En tabell kan betraktas som en mängd av sina kolumner. Den tomma mängden

är den som inte har något element alls. En mängd kallas väldefinierad, om man all-

tid kan avgöra om något element tillhör mängden eller ej. Vi utesluter icke-väldefi-

nierade mängder (Fotnot sid 78). I exemplet ovan har vi två väldefinierade mängder:

Person och Lägenhet. Läs mer om mängder.

En relation är ett samband som tilldelar ett element ur en mängd ett element ur en

annan mängd. Relationen mellan Person och Lägenhet definieras av den inledande

informationen om vem som bor i vilken lägenhet. Det finns olika sätt att beskriva

en relation. Tabellformen ovan är ett sätt att göra det. Praktiskt relevant blir rela-

tionsbegreppet först när man ställer upp relationer mellan tabeller. Därav har rela-

tionsdatabasmodellen fått sitt namn. Men en relation mellan tabeller bygger i sin

tur på relation mellan kolumner, i exemplet ovan mellan kolumnen Person och ko-

lumnen Lägenhet. I en relationsdatabas blir detta en relation mellan kolumnerna

som bildar tabellens primär- och främmande nycklar (sid 167).

http://www.taifun.se/images/stories/Mangder.pdf

 164

Läs om cartesiska produkten i avsnittet 2.5 Mängdlära och logik på sid 78.

 165

Personerna i mängden Person (på förra sidan) bor inte bara i lägenheter utan har

även vissa jobb. Låt oss anta att de arbetar på ett företag som har ett antal avdelnin-

gar som är belägna på olika platser. Tabellen ovan lagrar denna information. Inget

konstigt med den tabellen, skulle man kunna tycka. Men den går emot relations-

databasmodellens princip om modularisering (sid 160), enligt vilken information

om ett företags anställda ska lagras i en och information om företagets avdelningar

i en annan tabell. Här är båda samlade i en tabell. Varför är det inte bra ur effektni-

vitetssynpunkt?

Information i tabellerna ska ju inte bara lagras utan även underhållas dvs uppdate-

ras så att den alltid återger den aktuella situationen korrekt. Låt oss anta att det sker

en ändring i företaget och avdelningen IT flyttas från Kista till Stockholm. I

tabellen ovan måste denna ändring registreras på två olika rader i tabellen, därför

att det finns två personer, Ola och Eva, som jobbar på IT-avdelningen. Men det här

är ju bara ett exempel. Om det finns hundratals anställda på den avdelning som ska

flyttas blir det en massa jobb som bara kostar en massa onödiga pengar. Onödiga,

därför att man hade kunnat reducera jobbet till en ändring på en enda rad i en tabell

om informationen om avdelningar från början hade funnits i en separat tabell. Dvs

om man hade valt en annan modellering av databasen och modulariserat upplägget

av tabellerna.

Frågan som uppstår i den modulariserade modellen är nu: Hur får vi fram svaret på

frågan ”Var jobbar en anställd”? när informationen inte längre finns i en tabell utan

i två tabeller? Nästa sida ger svar.

 166

Här har tabellupplägget modulariserats och vi har två tabeller. Men tittar man noga

och jämför antalet kolumner i den gamla (förra sidan) och den nya modellen

(denna sida), kan man konstatera att det finns 5 kolumner i 1-tabellmodellen, me-

dan 7 kolumner sammanlagt i 2-tabellmodellen, tabellerna Anställda och Avdelnin-

gar. Dvs det har kommit till två nya kolumner. Modellen har fått en mer komplex

struktur. På ytan ser det ut som om vi hade krånglat till det hela. Men i själva

verket är det tvärtom! Vi har effektiviserat och förenklat tabellernas underhåll. Om

vi tar upp exemplet från förra sidan, då IT-avdelningen skulle flyttas från Kista till

Stockholm, behöver vi nu uppdatera endast ett värde på en enda rad i tabellen Av-

delningar, nämligen texten Kista på första raden i kolumnen Plats och inget mer. I

1-tabellmodellen var vi tvungna att uppdatera två värden på två rader i tabellen.

Frågan ”Var jobbar en anställd”? besvaras nu i den modulariserade 2-tabellmodel-

len på följande sätt: Anställden Alexander t.ex. som är säljare, jobbar enligt tabel-

len Anställda på avdelning nr 30. Med denna information går vi till tabellen Av-

delningar, söker där i kolumnen Nr efter värdet 30 och hittar informationen att 30 är

numret till avdelningen Marknad som ligger i Göteborg. Alltså jobbar Alexander i

Göteborg. Vi kunde besvara frågan tack vare de kolumner som vi laggt till i den

nya modellen: Kolumnen Avdelning i tabellen Anställda och kolumnen Nr i tabellen

Avdelningar. Man kallar den första kolumnen för främmande och den andra för

primärnyckeln. De definierar en relation mellan de två tabellerna.

 167

Relationsdatabasmodellens viktigaste praktiska konsekvens är införandet av nyck-

lar i databasen. Det finns två typer nycklar, primary och foreign keys. Primärnyc-

keln behövs för att på ett entydigt sätt kunna identifiera en rad och ange ett exakt

sökvillkor som hittar just denna rad bland tusen- eller kanske miljontals rader i en

tabell. Dessutom behövs primärnyckeln för att kunna definiera främmande nycklar,

varför den heter primär. Främmande nycklar behövs för att relatera tabeller till

varandra och kunna hitta information som enligt modulariseringsprincipen finns i

olika tabeller, t.ex. ”Vilka anställda jobbar på vilka (namngivna) avdelningar?”.

I praktiken består en primärnyckel av en (eller flera) kolumner som inte innehåller

någon genuin information om själva tabelltypen, utan snarare administrativ data för

effektiv hantering av tabellen. T.ex. är 174 ett nummer som anställden Ellen Abel

fått i tabellen EMPLOYEES ovan. Så har kolumnen EMPLOYEE_ID blivit tabellens

primärnyckel. En tabell får endast ha en primärnyckel, men den kan bestå av flera

kolumner, i vilket fall man pratar om en sammansatt primärnyckel. Kolumnen DE-

PARTMENT_ID däremot är en främmande nyckel i tabellen EMPLOYEES, därför att

den innehåller endast data från en annan tabells – nämligen DEPARTMENTS-tabel-

lens – primärnyckel. Värdena i den talar om – via numret – på vilken avdelning en

anställd arbetar. Dessa nummer är primärnyckelvärden i tabellen DEPARTMENTS.

Där är de unika. Men som främmande nycklar i EMPLOYEES förekommer de flera

gånger, eftersom flera anställda kan jobba på samma avdelning (sid 166). En främ-

mande nyckel är en relations konkreta realisering.

 168

5.3 Introduktion till SQL

Begreppet databashanterare betecknar en programvara som hanterar databaser

som i sin tur består av tabeller, nycklar osv. SQL Server, Access, MySQL, Oracle, DB2,

… är exempel på databashanterare. Facktermen är Database Management System

(DBMS), ibland med tillägget R som syftar åt Relational DBMS. Vi använder, för att

köra bokens kodexempel och övningar, databashanteraren Microsoft SQL Server.

Även om programvaran i regel – dvs när den används i skarp produktionsmiljö –

installeras på en server (dator med serverversionen av ett operativsystem, t.ex.

Windows Server), är det fullt möjligt att installera den även på en vanlig klient-

dator (t.ex. Windows 10) för test- och utbildningsändamål – vilket vi gjort för att

testa våra koder. Då finns både databasservern (DBMS) och klienten på en och

samma dator. Det spelar ingen roll när det gäller att lära sig användningen av data-

bashanteraren.

Microsoft SQL Server innehåller bl.a. en SQL-interpretator (tolk), en Transact SQL-

kompilator (översättare) – båda förenade i en s.k. parser – ett integrerat verktyg för

generering av maskinkod. Andra tillverkare har motsvarande verktyg i sina data-

bashanterare, som alla stöder SQL.

Transact SQL, även kallad T-SQL, är Microsofts utökning av SQL, ett programme-

ringsspråk för databashanteraren Microsoft SQL-Server. För att övervinna SQL-

språkets begränsningar, har man integrerat SQL i T-SQL, där man kan utnyttja

programmeringens alla konster. Alla databastillverkare har utvecklat sina egna pro-

cedurala utökningar av den allmänna SQL-standarden. Microsofts utöknings-

produkt är T- SQL, Oracle:s motsvarighet heter PL/SQL som står för Procedural Lan-

guage extensions to SQL.

 169

Klient – Server-modellen

För att förstå vad som egentligen pågår när man från C# ansluter sig till en databas

och vilka program som är ansvariga för vilken del av denna kommunikation,

speciellt samspelet mellan C# och SQL, ska vi i detta avsnitt titta på en modell som

är typisk för arbetet med en databas i en skarp miljö som bäst kan beskrivas med

den s.k. klient-server-modellen. Det är inte bara C# och SQL som är involverade i

denna process utan också en annan, helt ny programvara vom vi inte använt hittills,

nämligen SQL Server. På sid 168 hade vi nämnt den som ett exempel på en data-

bashanterare, i princip jämförbar med Access, MySQL, Oracle, DB2 osv. En sådan

programvara måste vara installerad på en serverdator i en skarp miljö för att vi som

klienter ska kunna kommunicera med en databas. Så här t.ex. kan den se ut:

SELECT-satsen skrivs på en (klient)dator och ska ta fram kolumnen depart-

ment_name från tabellen departments. Men databasen som administrerar denna

tabell finns i regel inte på samma dator utan på en annan (server)dator som

databashanteraren SQL Server är installerad på. Observera att du inte förväxlar SQL

Server som är ett program dvs mjukvara med servern som är en dator dvs hårdvara.

Vi som sitter vid klientdatorn skickar SQL-frågan till servern som sedan svarar med

en resultattabell, i det här fallet kolumnen department_name:s innehåll. Serverns

svar är alltid i tabellform, vare sig den har en, två eller flera kolumner. Hur servern

utför själva sökoperationen och hur den hittar tabellen departments i databasen

samt kolumnen department_name i den, behöver vi inte bry oss om. Det enda vi

behöver göra är att exakt beskriva vad operationens slutresultat ska bli. Och det gör

vi i SQL-frågan. Det är därför SQL också kallas ett deklarativt språk: Man beskriver

bara vad man vill ha, inte hur det ska göras – till skillnad från procedurala språk

där man kodar algoritmer dvs i allra högsta grad beskriver hur ett problem ska

lösas. Språk som beskriver hur ett problem ska lösas kallas procedurala. C, C++,

 170

Java, C#, PL/SQL, Transact SQL är exempel på procedurala språk, även om några

av dem dessutom är objektorienterade. SQL beskriver bara vad problemets – dvs

sökoperationens – slutresultat ska bli.

Det viktigaste i klient-server-modellen är kanske förståelsen för att det endast är

via databashanteraren – i vårt fall SQL Servern – vi kan komma åt databasen och

dess tabeller, öppna dem och med hjälp av SQL titta på deras innehåll. Inte den fy-

siska distinktionen mellan klient- och serverdatorn är avgörande – den kan i vissa

fall t.o.m. slopas – utan den logiska skillnaden mellan programmen på klient- och

serversidan. På serversidan måste en databashanterare vara installerad. Den admi-

nistrerar inte bara databasen och underhåller dess tabeller. Den har även ett verktyg

som kan exekvera SQL-kod dvs kan tolka SQL-språket till maskinkod – en s.k.

SQL-interpretator (tolk).

Lyckligtvis är databashanteraren SQL Server en integrerad del av Visual Studio

som (förhoppningsvis) installerades med när vi började programmera med C#

(Progr1, Appendix B). Så den borde vara installerad på våra datorer, bara att vi inte

har använt den hittills. Nu ska vi börja göra det. Till denna databashanterare

kommer vi att skicka våra SQL-satser via C#. Dvs C# kommer att vara den

klientmiljö hos oss som kommunicerar med SQL Servern. I och med detta känne-

tecknas vår miljö av en annan omständighet som skiljer sig från den skarpa miljön

som beskrivs på förra sidans bild: Klient och server finns i en och samma dator.

Rent tekniskt sett är det möjligt. Så länge det handlar om en test- och utbildnings-

miljö är det t.o.m. ganska bekvämt att inte behöva administrera två olika datorer

samt deras uppkoppling till varandra. Men då blir det ännu viktigare att vi i denna

miljö som förenar klient och server i en och samma maskin, skiljer klient- och ser-

verfunktionerna, C# och SQL Server, från varandra och relaterar dem till rätt pro-

gram, även om båda är integrerade i Visual Studio. Vi kommer nu att använda

denna miljö i hela databaskapitlet.

ADO.NET-objektmodellen

ADO.NET står för ActiveX Data Objects for .NET och är ett bibliotek av fördefi-

nierade C#-klasser som ingår i .NET-plattformen och kan användas för att komma

åt databastjänster på SQL Server och andra databashanterare. ADO.NET är en ny

produkt som ersätter Microsofts gamla ActiveX Data Objects. Även om vi kanske

inte direkt kommer att ha att göra med ADO.NET-objekt i våra enkla databasappli-

kationer, är det värt att känna till den bakomliggande teknologin. De viktigaste

namnutrymmen i ADO.NET-objektmodellen med sina tillhörande klasser är:

 System.Data

o DataSet
o DataTable

 System.Data.OleDb

 System.Data.SqlClient

o SqlConnection
o SqlCommand
o SqlDataAdapter

 171

SQL SQL –– databasers sprdatabasers språåkk

SStructured QQuery LLanguage

(Strukturerat frågespråk)

 Standardspråk för kommunikation med relationsdatabaser.

 Oberoende av databashanterare.

 Utvecklades på 70-talet av IBM.

Idag: allmän standard, senaste version: SQL-99

 Med SQL kan man ställa ””frfråågorgor”” till databaser för att

• ta fram, uppdatera,

• sortera och

• strukturera information i databaser,

• skapa tabeller, definiera constraints

• ge rättigheter till databasobjekt, …

SQL är världens mest använda språk för kommunikation med databaser – den all-

männa standarden i hela världen som gäller i alla databashanterare. Även om SQL

själv kallar sig för ett strukturerat ”fråge”språk, är dess användningsområdet långt

ifrån begränsad till att ”fråga” för att få fram en viss information. Med SQL kan

man även ändra innehållet i tabeller, skapa tabeller och andra databasobjekt, defi-

niera primär- och främmande nycklar (därmed relationer) samt andra s.k. con-

straints, skapa användarkonton, tilldela dem rättigheter och mycket mer. Con-

straints (restriktioner) är regler som ställs upp för att upprätthålla och bevaka da-

tabasens konsistens och integritet (helhet), vilket bl.a. innebär att det aldrig får fin-

nas någon motsägelsefull information i databasen.

Pga SQL:s stora användningsområde skulle man kunna överge den historiska be-

teckningen frågespråk och prata om SQL som ett kommunikationsspråk istället där

”kommunikation” även omfattar uppdatering samt underhåll och administration.

SQL utvecklades i början av 70-talet efter Dr. E.F.Codd:s banbrytande arbete om

relationsdatabaser (sid 159) av ett forskarteam på IBM, kommersialiserades 1979 av

Relational Software (föregångaren till Oracle) och standardiserades 1986 av ANSI,

det amerikanska och 1987 av ISO, det internationella organet för standardisering.

Sedan dess har ISO ökat SQL:s funktionaliteter. Den senaste standarden är SQL-99

som kompletterades 2003/2006 med bl.a. stöd för XML (eXtensible Markup Language),

ett språk med syftet att kunna utbyta data mellan olika informationssystem.

Har du installerat Visual Studio på din dator så finns det även SQL med installerad på

din dator, närmare bestämt databashanteraren Microsoft SQL Server. Du kan etablera

kontakt med den när du öppnar Visual Studio, vilket vi kommer att lära oss i 5.4 Vår

första SQL Server databas med C# (sid 179).

 172

SELECT-satsen är SQL-språkets mest använda sats, har många varianter och kan

kombineras med de flesta andra satser i SQL. Vad den kan göra visas kortfattat på

bilden ovan: Att selektera (välja ut) data från databasens tabeller, antingen kolumner

(projektion) eller rader (selektion). Detta kan göras från en, två eller flera tabeller. I

praktiken innehåller ju en skarp databas stora mängder av information. Men i det

dagliga arbetet behöver man ofta bara en liten bråkdel av denna väldiga information.

SELECT-satsen ger oss möjligheten att selekter och få ut exakt den information som

vi önskar just då. I så fall måste vi definiera var denna information är lagrad i data-

basen, dvs i vilken tabell, i vilken kolumn och på vilken rad av denna tabell osv. Re-

lationsdatabasens struktur gör det möjligt att hitta den sökta informationen med en

enkel och logisk syntax i SELECT-satsen som visas på bilden nedan. Denna sats tar

fram alla kolumner –

med symbolen * –

från tabellen depar-

tments. När denna

sats skickas till data-

basen svarar servern

med att visa tabellen

departments’ alla

kolumner dvs hela

tabellinnehållet. Bör-

jan av denna utskrift

är avbildad under

SELECT-satsen.

Tabellen har fyra ko-

lmner vars rubriker

syns i första raden.

Listar man upp dessa efter SELECT får man en alternativ syntax för SELECT-satsen

som ger samma resultat.

 173

SELECT och FROM är reserverade ord i SQL. Efter SELECT står kolumnernas och

efter FROM tabellens namn. Här selekterar SELECT-satsen endast kolumnerna

department_id och location_id från tabellen departments. Svaret från

servern är kolumnerna med rubriker och innehåll som visas under SELECT-satsen i

den ordning vi angett dem i satsen, vilket inte har att göra med i vilken ordning de är

lagrade i tabellen. Att innehållet i dessa kolumner är tal beror på att de är nycklar i

tabellen: department_id är primärnyckeln och location_id är en främmande

nyckel i tabellen departments. Främmande nyckeln hänvisar till en annan tabell,

närmare bestämt till tabellen locations. Där hittar man dessa nummer som är är

tilldelade vissa orter som är säten till resp. avdelning vars nummer i sin tur står i ko-

lumnen department_id. På så sätt kan man få reda på en eller flera avdelningars

säten. Men detta kräver bl.a. att man selekterar inte bara kolumner (projektion) utan

även rader (selektion:

Tabellen EMPLOYEES

lagrar information om

företagets anställda. Ett

utdrag ur denna tabell på

bilden till höger visar att

tre anställda jobbar på av-

delningen 90. Hur kan vi

selektera från denna ta-

bell de rader som i ko-

lumnen department_id

har värdet 90? Vi får läg-

ga till SELECT-satsen en

ny satsdel som inleds

med det SQL-reserverade

ordet WHERE.

 174

Här utvidgas SELECT-satsen med WHERE: Medan efter SELECT står kolumner och

efter FROM tabellen, skrivs efter WHERE ett villkor som jämför värdena i kolumnen

department_id med talet 90. Servern svarar med endast de rader för vilka detta

villkor visar sig vara sant. Dessa visas under SELECT-satsen. Istället för detta enkla

villkor kan efter WHERE även stå ett sammansatt villkor som man kan formulera med

logiska operatorer. Istället för en jämförelse mellan kolumnvärden och tal kan även

jämförelser göras mellan kolumnvärden och tecken, strängar eller delar av strängar.

Ja t.o.m. mönstermatchning mot delsträngar är möjlig. Med det reserverade ordet

LIKE som man skriver istället för likhetstecknet i villkoret efter WHERE kan ganska

avancerade sökningar göras i tabellen för att selektera just de rader man behöver.

Den enda begränsning man har är att de jämförda objektens datatyper måste överens-

stämma. Ett tal kan inte jämföras med en sträng. I exemplet ovan måste värdena i

kolumnen department_id vara av samma typ som talet 90. I en relationsdatabas

har varje kolumn i en tabell en datatyp. Värden av en annan typ kan inte lagras i

kolumnen. All data i en kolumn är av samma datatyp som vi måste känna till när vi

använder kolumnen i ett villkor i satsdelen WHERE. Det är villkorets sanningsvärde

som avgör vilka rader som skrivs ut.

Den första SELECT-satsen i bilden ovan skriver ut de anställda som jobbar på avdel-

ning 90 tillsammans med sina andra uppgifter i kolumnerna employee_id, last_-

name, job_id och department_id. Den sista kolumnen skrivs ut endast i syftet

att kontrollera att de utskrivna anställda verkligen jobbar på avdelning 90. I en verk-

lig situation har man inte behov av denna information. Man har ju själv angett den i

sökvillkoret. Då skulle man skriva SELECT-satsen utan kolumnen department_id

vilket visas i den undre delen av bilden ovan. Även den kommer att fungera och skri-

va ut samma information utan avdelningsnumren. Detta visar att WHERE-villkoret kan

involvera kolumner som inte förekommer i SELECT-satsen. Det räcker att de finns i

tabellen.

 175

När man med SELECT-satsen tar ut ett antal kolumner från en tabell presenteras

kolumnerna i den ordning man angett dem i SELECT-satsen. Men i vilken ordning

visas raderna? Det är obestämt och kan ej förutsägas. Servern skriver ut raderna mer

eller mindre slumpmässigt, även om man kan förmoda att den tar dem i den ordning

de står i databasens tabell. Men även där finns ingen tillgänglig information om

radernas ordning. I princip är radernas ordning odefinierad.

Men vill man att raderna ska visas i en viss ordning, finns det möjligheten att lägga

till SELECT-satsen en ny satsdel som inleds med den reserverade ordkombinationen

ORDER BY, följd av ett (eller flera) kolumnnamn. I exemplet ovan står kolumnen

hire_date efter ORDER BY. Då kommer raderna i utskriften att sorteras efter de an-

ställningsdatum som står i kolumnen hire_date, närmare bestämt i stigande ord-

ning. Dvs först kommer den anställd som blivit anställd tidigast av alla. Sedan följer

anställda sorterade efter sina anställningsdatum. Själklart kan man ange en annan ko-

lumn efter ORDER BY, t.ex. lastname, så att sorteringen görs efter efternamnen.

Skriver man inte något explicit (by default) görs sorteringen i stigande ordning. Vill

man ha sorteringen i fallande ordning kan man lägga till det reserverade ordet DESC

(som står för DESCending) efter kolumnnamnet i satsdelen ORDER BY. Har man flera

satsdelar i SELECT-satsen, måste ORDER BY placeras sist i SELECT-satsen, t.ex.:

SELECT last_name, salary
FROM employees
WHERE salary > 12000

ORDER BY salary DESC;

Denna SELECT-sats visar efternamn och lön till de anställda vars lön är över 12 000,

sorterade efter lönerna i fallande ordning. Dvs vi kommer att se anställden med

maximal lön först, följd av alla andra vars löner successivt faller, men ligger över

12 000.

 176

Sökning i en tabell är en av de mest förekommande användningarna för databaser.

Därför finns det i SQL en uppsjö av möjligheter att jämföra data med varandra. Bero-

ende på vilken typ av data vi har att göra med – tal, tecken, text, datum osv. – har vi

s.k. jämförelseoperatorer av olika slag. Det vanliga likhetstecknet = är en av dem.

Men ofta har man inte möjligheten att testa på exakt likhet. Man kanske inte kommer

ihåg det exakta namnet på en person man söker. Av en anställd i företaget kommer

vi bara ihåg att hans eller hennes förnamn börjar på S och slutar på n. Då kan vi

skicka SELECT-satsen på bilden ovan till databasen genom att i WHERE-villkoret

skriva LIKE 'S%n'. Tecknet % är i SQL ett mönstermatchningstecken som står för

vilket och hur många tecken som helst. Ett annat mönstermatchningstecken är _ och

står också för vilket tecken som helst, men endats ett. En kombination av båda ger

väldigt effektiva sökningar, se följande exempel:

 177

Alla våra satser i SQL var hittills SELECT-satser. Det gemensamma hos dem är att de

är read-only dvs de kan inte ändra databasen. Alla SELECT-satser, oavsett i vilken

variant de förekommer, gör utdrag ur databasen och visar oss delar av den i form av

en utskrift. Efter dessa utdrag är databasen i sitt gamla skick. När man däremot vill

skapa tabeller är detta en ingrep i databasen som gör ändringar. Därför har man i

SQL en helt annan grupp av satser med befogenheten att inte bara kunna läsa från

(read-only) utan även kunna skriva i databasen. En av dem är CREATE TABLE-satsen.

CREATE TABLE-satsen tillhör gruppen Data Definition Language (DDL) i SQL. Ett

exempel på hur man skriver den ser man på bilden ovan. Denna sats skapar en tabell

som heter Kurser med kolumnerna KursID, Namn, Längd och InstID. Varje

kolumn måste få en datatyp tilldelad när man definierar tabellen. I exemplet ovan har

kolumnerna KursID, Längd och InstID datatypen INT och kolumnen Namn

datatypen VARCHAR(50) vilket betyder text av längden max 50 tecken. NULL bety-

der ingen information dvs tom cell i tabellen. Vissa kolumner tillåts att ha tomma

celler, andra ine (NOT NULL).

Identity

Dessutom ska kolumnen KursID vara Identity. I Microsoft SQL Server kallas den

kolumn som ska automatiskt få en sekvens av löpande nummer som värden för

Identity. Det är inte samma sak som primärnyckel, utan endast en automatisk

numrering av raderna med ett startvärde (Identity Seed) och ett steg (Identity

Increment). Identity(1,1) betyder att startvärdet och steget ska ha värdena 1. En

konsekvens av detta är att du numera inte får ge denna kolumn några värden själv,

när du lägger in rader i tabellen, eftersom den får sina värden automatiskt pga Iden-

tity-egenskapen. I andra databassystem, t.ex. i Oracle, heter denna egenskap se-

kvens (Sequence) och är ett eget databasobjekt.

 178

När vi skrev våra exempel på SQL-satser förklarade vi inte varför vi skrev dem just i

den form vi gjorde. Här kommer några regler och konventioner om SQL-satsernas

form (layout). Observera skillnaden mellan regler och konventioner. Regler måste

följas, annars kan man inte exekvera koden. Konventioner är rekommendationer som

är till för att strukturera koden på bäst möjliga sätt, så att den blir optimal ur läsbar-

hets- och förståelighetssynpunkt. Konventioner tillhör god programmeringsstil. Ko-

den kan exekveras även utan att man följer dem.

Till skillnad från de flesta programmeringsspråken är SQL inte case sensitive, dvs det

spelar ingen roll om man skriver de reserverade orden med stora eller små bokstäver:

select fungerar lika bra som SELECT. Ändå ges rekommendationen att skriva

SELECT av den enkla anledningen att bättre kunna skilja mellan SQL-reserverade ord

å ena och databasens objekt som tabell-, kolumn- och andra namn å andra sidan.

Till skillnad från de flesta programmeringsspråken behöver man inte avsluta en SQL-

sats med semikolon. Ändå ges rekommendationen att göra det. Den här rekommen-

dationen har kanske inte lika stark skäl som förra. Ett skäl kan vara att skilja mellan

satsdelar och satser. Ett annat skäl är att skilja mellan olika satser, vilket inte före-

kommer bland våra exempel, men blir påtagligt när man skriver ett s.k. script be-

stående av flera SQL-satser. I enlighet med andra programmeringsspråk finns det in-

gen regel för radbrytning varken mitt i en sats eller mellan olika satser. Koden i alla

våra exempel skulle kunna exekveras om vi skrev den på en enda rad. Men för att

strukturera koden och optimera läsligheten samt förståeligheten rekommenderas att

påbörja en ny satsdel med en ny rad.

Det finns mycket mer att säga om SQL i allmänhet och om SELECT-satsen i synner-

het, men vi sätter punkt här för att återvända till C# och börja använda SQL med C#.

 179

5.4 Vår första SQL Server databas

Efter de inledande avsnitten om databaser och SQL är det dags att bygga vårt första

C#-projekt som ansluter sig till en databas och utför enkla operationer: att ansluta

sig till SQL Server som följde med vid installationen av Visual Studio, att öppna

databasen och att visa tabellerna osv. Allt detta ska dessutom göras via ett grafiskt

gränssnitt i Visual Studio. Dvs vårt första databasprojekt blir en Windows Forms

Application. I det här avsnittet kommer vi att lära oss att:

 ladda en databas till en C# Windows Forms Application, etablera kontakt

med den och använda den som en datakälla,

 visa databasens tabeller i en DataGridView-kontroll,

 kunna med SQL lägga till och ta bort rader från tabellerna samt spara ta-

bellernas nya tillstånd via det grafiska gränssnittet.

Som datakälla kommer vi att använda oss av en exempeldatabas som är lagrad i

filen Books.mdf. Filändelsen mdf står för Microsoft SQL Server database file, ett

filformat som Microsoft använder för fysiska databasfiler. Ändelsen visar att filen

är genererad i SQL Server och kan därför endast öppnas och läsas i SQL Server. Vi

kommer att använda den från C# genom att ansluta oss till SQL Server. Du kan

ladda ner filen från webbsidan www.taifun.se. Klicka där på bokomslaget Pro-

grammering 2 med C#, skrolla ned och leta efter länken Books.mdf, klicka på den

för att ladda ned den. Extrahera sedan zip-filen. Gör så här:

Steg 1: Att skapa ett projekt av typ Windows Forms Application

Öppna Visual Studio och välj Create a new project. Bland de många typer av pro-

jekt (templates) som visas, välj följande variant av en Windows Forms Application:

Markera denna ruta och klicka på Next-knappen. Dialogrutan Configure your new

project dyker upp. Döp projektet till FirstDatabase. Ange Location, bocka för rutan

Place solution … och klicka på Create-knappen. Ett grafiskt gränssnitt dyker upp

med ett s.k. formfönster i mitten som har rubriken Form1. Formfönstret har ett an-

tal egenskaper som är samlade i fönstret Properties i det nedre högra hörnet. Om

du inte ser Properties-fönstret kan du få fram det genom att från menyraden välja

View  Properties Window. För att enklare hitta egenskaperna, ordna dem i

alfabetisk ordning med ikonen Alphabetical till höger:

Markera formfönstret och leta i Properties-fönstrets vänstra kolumn efter egenska-

pen Text. Dess defaultvärde kan avläsas i den högra kolumnen, just nu: Form1.

Markera det och ändra det till FirstDatabase. Så snart du gjort detta syns den nya

 180

texten på formfönstrets rubrik. Gå vidare till egenskapen Size i Properties-fönstret

och sätt storleken till 850; 400, så här:

 Form1:

Egenskap Värde
Text FirstDatabase

Size 850; 400

Steg 2: Att koppla upp sig till SQL Servern

Här vill vi infoga exempeldatabasen Books.mdf i vårt projekt FirstDatabase. För

att göra det behöver vi ett nytt fönster som heter Data Sources. Gå i menyraden till

ett textfält längst till höger som det står Search i och skriv Data Sources i det.

Klicka på den lilla triangeln ovan på rubrikraden och välj Dock för att fästa det i

Visual Studio. Vid det här läget borde ditt fönster i Visual Studio se ut så här:

Gå till det nya fönstret Data Sources och klicka på länken Add New Data Source....

Du får följande dialogruta som frågar efter typen av datakälla som du vill använda i

projektet:

 Markera Database under frågan Whe-

re will the application get data from?
Klicka på Next.

 Nästa dialogruta frågar efter typen av

databasmodell (visas inte här). Marke-

ra Dataset och klicka på Next.

 Nästa dialogruta frågar efter databasen

som ditt projekt ska kopplas till. Klic-

ka på knappen New Connection… :

 181

 Du får ytterligare en dialogruta som

heter Choose Data Source (visas

inte här). Välj som Data source: Mic-

rosoft SQL Server Database File.

Klicka på knappen Continue. Här

kan det vara att du måste installera

packages för SQL Server Support.

Om det är så, gör det. Dialogrutan

Add Connection dyker upp. Klicka i

den på Browse-knappen och navige-

ra genom filsystemet på din dator för

att ladda databasfilen Books.mdf till

projektet. Klicka på OK. Det kan va-

ra att Visual Studio vill uppgradera

databasfilen så att den blir kompa-

tibel med din aktuelle version av Vi-

sual Studio. I så fall svara bara ja.

 Du återvänder till dialogrutan Choo-

se Your Data Connection, bara att det nu har tillfogats namnet på databasfilen.

Klicka på Next. Svara Ja på frågan om du vill kopiera filen till projektet.

 I nästa dialogruta som heter Save the Connection String to the Application

Configuration File är namnet BooksConnectionString redan förvalt för den

förbindelse du skapade ovan. Bocka för lilla rutan Yes, save the connection

as: (om den inte redan är förbockad) och klicka på Next.

 I nästa och sista dialogruta som du ser på nästa sida ska du välja de delar av

databasen, s.k. databasobjekt som du vill använda i ditt projekt. Vår databas i

filen Books.mdf har bara tabeller. Så bocka den lilla rutan vänster om Tables

och expandera Tables med den lilla pilen till vänster Du får en första inblick i

databasens innehåll.

 182

Som man ser har databasen tre tabeller: AuthorISBN, Authors och Tiltles. Klic-

ka på Finish.

Du återvänder till projektets ursprungliga miljö. Men nu ser man databasens

struktur i fönstret Data Sources till vänster och det har kommit till i Solution

Explorer databasfilen Books.mdf som en del av projektet. Dessutom har Visual

Studio skapat bl.a. ett s.k. XML Schema document med namnet BooksData-

Set.xsd. Markera det, högerklicka och välj View Designer för att se databasens

struktur i ett diagram som kallas för DataSet Designer:

 183

Diagrammet DataSet Designer (på förra sidan) visar 3 tabeller: Varje ruta repre-

senterar en tabell. Överst står tabellernas namn, under dem kolumnerna. De kolum-

ner som är markerade med en nyckel är tabellens nycklar. I tabellen Authors är ko-

lumnen AuthorID primärnyckeln. I tabellen Titles är kolumnen ISBN primärnyc-

keln. Tabellen AuthorISBN:s båda kolumner är däremot främmande nycklar. Des-

sutom visar diagrammet även relationerna mellan databasens tabeller. De är ritade

med linjer försedda med pilar. Läs om relationer och primär- och främmande

nycklar på sid 163-166 / 167.

Steg 3: Att visa databasens innehåll

Diagrammet ovan och fönstret Data Sources visar databasens innehåll: Vi ser t.ex.

att det finns en tabell som heter Authors. Vi vill titta i den. För att öppna tabellen

Authors och visa dess rader och kolumner gör så här:

 Återvänd till din form Form1 via fliken eller genom att i Solution Explorer

markera Form1.cs, högerklicka på den och välja View Designer.

 Gå till det nya fönstret Data Sources på vänstersidan, markera tabellen Authors

och dra den med musen (genom att hålla ned den vänstra musknappen) till formen.

Därmed har du skapat två nya s.k. kontroller i formen: Den ena heter authorsBin-

dingNavigator och är en rad med ett antal navigeringsmenyer som lägger sig direkt

under formens rubrik. Den andra heter authorsDataGridView och är en plats där ta-

bellen Authors’ innehåll kommer att visas. Klicka på authorsDataGridView:s Smart

Tag (lilla pilen till höger ovan) och klicka på Dock in parent container, så att au-

thorsDataGridView fyller hela formen. Så här borde resultatet bli:

 184

Som man ser har den nya kontrollen authorsDataGridView samma kolumner som

tabellen Authors, nämligen AuthorID, FirstName och LastName. Observera också

att authorsDataGridView inte än visar tabellens innehåll utan förbereder denna vis-

ning genom att skapa en plats som är anpassad till tabellens struktur.

Allt vi gjort hittills skedde i designläge. Vi har inte använt en enda rad kod. Ändå

är programmet nu redo att visa tabellens innehåll när vi nu går över från design- till

körläge. Kompilera från menyraden med  Build  Build Solution och exekvera

med  Debug  Start Without Debugging. Tabellen Authors har fyra rader och tre

kolumner och ser ut så här:

Nu kan vi i körläge använda menyerna under formens rubrik för att hantera tabel-

len. I själva verket är det kontrollen authorsBindingNavigator:s menyer vi använ-

der. Med hjälp av dessa självinstruerande knappar kan vi:

- navigera genom tabellens rader

- ändra radernas innehåll

- lägga till nya rader (med +)

- ta bort rader (med x)

- spara dina ändrigar

I början sa vi att detta projekt genomförs med Visual Studios visuella verktyg utan

att vi själva behöver skriva någon kod. Så har vi också gjort. Men det betyder inte

att programmet fungerar helt utan kod. Det har skapats automatiskt genererad kod

som ligger i filen Form1.cs: Två händelsemetoder har lagts till klassen Form1. Den

ena heter Form1_Load() och ser till att, när formen laddas, dvs när programmet

exekveras, data kopieras från databasfilen till projektets DataSet, så att vi ser tabel-

lens innehåll i DataGridView-kontrollen. Den andra händelsemetoden heter au-

thorsBindingNavigatorSaveItem_Click() och ser till att data sparas i DataSet när

man klickar på Save-menyn i nya kontrollen authorsBindingNavigator. Allt detta

hände när vi skapade de två nya kontrollerna authorsDataGridView och authors-

BindingNavigator i vårt projekt genom att med musen dra tabellen Authors från fön-

stret Data Sources till formen.

 185

5.5 En SQL klient i C#

I det här avsnittet kommer vi att lära oss att:

 skicka SQL-frågor från en ComboBox-kontroll till databasen Books,

 visa frågornas resultattabell i en DataGridView-kontroll.

Steg 1: Att skapa projektet och förse det med databasen Books

 Detta steg liknar Steg 2 i projektet FirstDatabase. Öppna Visual Studio,

skapa en Windows Forms Application och döp projektet till SQLclient. Än-

dra formfönstrets rubrik och storlek enligt följande:

Form1:

Egenskap Värde
Text En SQL klient

Size 1200; 600

 Genomför de steg från projektet FirstDatabase som var nödvändiga för att

ladda databasen Books.mdf till projektet (sid 180-183), dvs förkortat:

 I huvudmenyraden: Search  Data Sources  Dock.

 Klicka i det nya fönstret Data Sources på ikonen Add New Data Source.

 Choose a Data Source Tye: Database  Next.

 Choose a Database Model: Dataset  Next.

 Choose Your Data Connection: New Connection…

 Add Connection: Browse  Books.mdf … OK  Next.

 Choose Your Data Connection  Next  Ja.

 Save the Connection String to the Application Configuration File  Yes,

save the connection as:  Next.

 Choose Your Database Objects  Expand Tables  Finish.

Du återvänder till projektets ursprungliga miljö med formfönstret osv. Databa-

sen Books har infogats i projektet. Gå till Data Sources och expandera Books-

DataSet för att se databasens innehåll: tre tabeller med sina resp. kolumner.

 Markera tabellen Titles i fönstret Data Sources och dra den med musen

till formen. Så skapar du kontrollerna titlesBindingNavigator och titlesDa-

taGridView som placeras i formen. Klicka på titlesDataGridView:s Smart

Tag och klicka på Dock in parent container. Så här borde din miljö nu se

ut.

 186

 Markera i Solution Explorer BooksDataSet.xsd, högerklicka på det och

välj View Designer. Du ser databasen Books:s struktur i ett diagram med

alla tabeller, relationer, primär- och främmande nycklar osv. Den här vi-

suella representationen av databasen, DataSet Designer, känner vi till från

tidigare projekt.

DataSet Designer:

Diagrammet visar i slutet av varje tabellruta en s.k. TableAdapter. Det är

en klass som automatiskt genereras av Visual Studio till varje tabell. Klas-

sen TableAdapter har bl.a. en metod Fill() som anropas i händelsemetoden

Form1_Load() som i sin tur anropas när formen laddas. Och detta sker

när vi exekverar programmet. Koden finns i filen Form1.cs.

Kompilera och kör projektet nu för att se hela tabellen Titles’ innehåll.

 187

Steg 2: Att skriva och exekvera egna SQL satser

Om vi nu vill med SQL-frågor selektera och visa endast vissa delar av tabellen

Titles måste vi lägga till egna metoder till klassen TableAdapter och formulera våra

SQL-frågor i dem. Det är tekniken att skicka SQL satser till servern. Gör så här:

 Markera i diagrammet DataSet Designer på förra sidan, i rutan som repre-

senterar tabellen Titles, klassenTitles’ TableAdapter, högerklicka och välj

Add Query… . Dialogrutan Choose a Command Type öppnas:

Välj alternativet Use SQL Statement och klicka på Next.

 Nästa dialogruta: Choose a Query Type.

Välj SELECT which returns rows och klicka på Next.

 188

Nästa dialogruta heter Specify a SQL SELECT statement. Skriv in följan-

de SQL-fråga i textfältet med rubriken What data should the table load?

och klicka på Next (OBS! inte på finish!):

SELECT *

FROM Titles

WHERE Copyright = '2007';

 Dialogrutan Choose Methods to Generate dyker upp:

Här måste vi specificera de metoder som ska exekvera vår SQL-fråga. Vi

vill använda våra egna metoder. Därför ändrar vi de förvalda namnen

FillBy till FillCopyright2007 och och GetDataBy till GeDataCopyright2007.

 189

Klicka nu på finish för att återvända till diagrammet DataSet Designer. De

två nydefinierade metoderna har nu kommit till rutan som visar tabellen

Titles, längst ned under TitlesTableAdapter. Kompilera och kör: Fortfaran-

de ser man hela tabellen Titles.

 Nu ska vi exekvera den nya SQL satsen. Markera Form1.cs i Solution Ex-

plorer, högerklicka och välj View Code för att se formens kod. Sist bland

klassens Form1:s metoder finns händelsemetoden Form1_Load(). Ersätt

anropet av metoden Fill() i den med anropet av den nya metoden FillCopy-

right2007(). Så här blir då Form1_Load():s fullständiga kod:

private void Form1_Load(object sender, EventArgs e)

{
 this.titlesTableAdapter.FillCopyright2007

 (this.booksDataSet.Titles);

}

 Kompilera och kör. Här är resultatet av den nya SQL satsen:

Som man ser visas endast två böcker med värdet 2007 i Copyright-kolum-

nen pga att vi i formens kod hade ersatt metoden Fill() med metoden

FillCopyright2007().

 Testa även anropet av metoden Fill() istället för metoden FillCopy-

right2007():

private void Form1_Load(object sender, EventArgs e)

{
this.titlesTableAdapter.Fill(this.booksDataSet.Titles);

}

Resultatet blir att man får tabellen Titles’ fulla innehåll dvs alla rader.

Hur vet man att metoden Fill() exekverar den SELECT-sats som visar alla rader,

och metoden FillCopyright2007() exekverar den SELECT-sats som endast vi-

sar de rader med värdet 2007 i Copyright-kolumnen? Vi kan få reda på det om vi

gör så här:

 190

Markera i Solution Explorer BooksDataSet.xsd, högerklicka, välj View Designer:

Markera i rutan som visar tabellen Titles, längst ned under TitlesTableAdapter, ra-

den Fill,GetData() så får du i Properties-fönstret metoden Fill():s egenskaper. I egen-

skapen CommandText kan du läsa den SELECT-sats som är kopplad till Fill().

Om du i samma ruta markerar raden FillCopyright2007,GetDataCopyright2007()

kan du i Properties-fönstret läsa SELECT-satsen i metoden FillCopyright2007():

Eftersom vi i det här databasprojektet för första gången har tillfogat lite kod till de

visuella verktyg som byggde projektet vill vi här sammanfattningsvis visa den vik-

tigaste delen av kod som vid sidan av den stora mängden automatiskt genererad

 191

kod, styr exekveringen av projektet och som vi har modifierat lite grann. Denna

kod finns i filen Form1.cs. Du får fram den genom att markera Form1.cs i Solution

Explorer, högerklicka och välja View Code. För enkelhetens skull har vi tagit bort

all onödig automatiskt genererad kod och behållit det som behövs för detta projekt:

// Form1.cs i projektet SQLclient, ver 1. Visar data från

// en databastabell i en DataGridView-kontroll.

// Klassen Form1 ärver klassen Form från System.Windows.Forms

// Deklarerar tre metoder: en konstruktor & 2 händelsemetoder

using System;

using System.Windows.Forms;

namespace SQLclient

{
 public partial class Form1 : Form // Form1 ärver Form

 {
 public Form1() // Klassens konstruktor

 {
 InitializeComponent();

 }

 private void titlesBindingNavigatorSaveItem_Click(

 object sender, EventArgs e)

 {
 this.Validate();

 this.titlesBindingSource.EndEdit();

 this.tableAdapterManager.UpdateAll(this.booksDataSet);

 }

 private void Form1_Load(object sender, EventArgs e)

 {
 this.titlesTableAdapter.FillCopyright2007

 (this.booksDataSet.Titles);

 }
 }
}

Klassen Form1 definierar tre metoder: Den första metoden Form1() är klassens

konstruktor som initierar formens grafik. Den andra metoden titlesBindingNa-

vigatorSaveItem_Click() är en händelsemetod som definieras här och anro-

pas när Save-knappen i kontrollen titlesBindingNavigator klickas. Då sparas alla

gjorda ändringar i projkektets DataSet. Den tredje metoden Form1_Load() är

också en händelsemetod som definieras här, men anropas när formen laddas. Och

formen laddas när vi exekverar projektet. I metoden Form1_Load() anropas i sin

tur metoden FillCopyright2007() som vi lagt in där. Den exekverar SELECT-

satsen som vi skrev in i dialogrutan Specify a SQL SELECT statement, nämligen:

SELECT *

FROM Titles

WHERE Copyright = '2007';

 192

Steg 3: Att lägga till ett grafiskt gränssnitt till SQL klienten

Hittills är detta projekt inte särskilt intressant ur praktisk synpunkt. Det var mer

lämpat för att lära känna de mest grundläggande rutinerna i hanteringen av en data-

bas. Man förväntar sig lite mer av en ”SQL klient”, framför allt en smidigare kom-

munikation mellan klienten C# och SQL Servern. För att åstadkomma detta ska vi

nu vidareutveckla projektet och förse det med två nya grafiska komponenter. En av

dem är en kontroll som heter ComboBox som kommer att tjäna som en plats där vi

från en dropplista kan så att säga online välja våra SQL-frågor och skicka dem till

SQL Servern. Den andra är en kontroll som heter Label som instruerar användaren.

Svaret från servern ska precis som hittills visas i den DataGridView-kontroll som vi

skapat och redan använt i den första delen av projektet.

Den nya kontrollen ComboBox är en dropplista där användaren kan välja mellan

olika alternativ. Den kräver lite mer kod som ska avgöra vilket alternativ använ-

daren valt just vid den aktuella körningen för att kunna exekvera rätt SQL-sats. Vi

kommer att realisera detta genom att skriva en switch-sats ”bakom” den grafiska

komponenten ComboBox.

Gör så här:

 Återvänd till formfönstret Form1 genom att i Solution Explorer höger-

klicka på Form1.cs och välja View Designer.

 Gå till huvudmenyraden, klicka på View och välj Toolbox. Fönstret Data

Sources till vänster ersätts med Toolbox-fönstret. Expandera Toolboxens

Common Controls. Markera kontrollen ComboBox, dra den med musen

(genom att hålla ned den vänstra musknappen) till formen och lägg den

längst ned i formen. Genomför i Properties-fönstret följande ändringar i

den nya ComboBox-kontrollens egenskaper:

comboBox1:

Egenskap Värde
Location 0; 515

Size 1180; 28

 Markera formen, hämta från Toolbox en Label-kontroll till formen och gör

i Properties-fönstret följande ändringar i den Labelns egenskaper:

label1:

Egenskap Värde
Location 400; 485

Text Välj en SQL-fråga från dropplistan:

Font Arial; 12pt; style=Bold

 193

 Markera kontrollen comboBox1 och klicka på dess Smart Tag (den lilla

pilen till höger). Välj Edit Items, skriv in följande texter i dialogrutan

String Collection Editor och klicka på OK:

SELECT * FROM Titles;

SELECT * FROM Titles WHERE Copyright = ’2007’;

SELECT * FROM Titles WHERE Copyright = ’2009’;

SELECT * FROM Titles WHERE EditionNumber > 4;

SELECT * FROM Titles ORDER BY BookTitle;

 Dubbelklicka på ComboBox-kontrollen när den är markerad i formen. Fi-

len Form1.cs visas där huvudet till en händelsemetod automatiskt skapats

som heter comboBox1_SelectedIndexChanged(). Den kommer att

anropas så snart man väljer resp. byter till ett alternativ i ComboBoxens

dropplista. Lägg in följande switch-sats i metoden comboBox1_Selec-

tedIndexChanged() vars kod är markerad med vit bakgrund:

// Form1.cs i projektet SQLclient

// Skickar SQL-frågor till en databas från en ComboBox

// Visar serverns svar i en DataGridView-kontroll

using System;

using System.Windows.Forms;

namespace SQLclient

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 private void titlesBindingNavigatorSaveItem_Click(

 object sender, EventArgs e)

 {
 this.Validate();

 this.titlesBindingSource.EndEdit();

 this.tableAdapterManager.UpdateAll(this.booksDataSet);

 }

 private void Form1_Load(object sender, EventArgs e)

 {
 }

 private void comboBox1_SelectedIndexChanged

 (object sender, EventArgs e)

 {
 switch (comboBox1.SelectedIndex)

 {
 case 0:

 titlesTableAdapter.Fill(this.booksDataSet.Titles);

 break;

 194

 case 1: titlesTableAdapter.FillCopyright2007

 (this.booksDataSet.Titles);

 break;

 case 2: titlesTableAdapter.FillCopy2009

 (this.booksDataSet.Titles);

 break;

 case 3: titlesTableAdapter.FillEdNo4

 (this.booksDataSet.Titles);

 break;

 case 4: titlesTableAdapter.FillOrderBy

 (this.booksDataSet.Titles);

 break;

 }
 }
 }
}

Samtidigt ta bort kroppen till formens händelsemetod Form1_Load(), inte hela

metoden. Detta därför att anropen av metoderna Fill() och FillCopyright-

2007() är flyttade till ComboBoxens händelsemetod comboBox1_SelectedIn-

dexChanged(), närmare bestämt till case 0 och 1 av switch-satsen. Ingen SQL-

sats ska exekveras när formen laddas, utan först när man väljer ett alternativ i

ComboBoxens dropplista. I och med detta val tilldelas ComboBoxens variabel

comboBox1.SelectedIndex ett av värdena 0-4. Då kommer den metod att an-

ropas i switch-satsen som svarar mot detta värde.

För att koden ovan ska fungera måste vi komplettera TitlesTableAdapter-klassens

metoder med de metoder vi anropar i switch-satsen ovan. Därför gör så här:

 Återvänd till DataSet Designer. Markera i rutan som visar tabellen Titles,

klassen TitlesTableAdapter, högerklicka och välj Add  Query… .

 Gå igenom de dialogrutor från projektets första del, förkortat:

 Choose a Command Type  Use SQL statements  Next.

 Choose a Query Type  SELECT which returns rows  Next.

 Skriv i dialogrutan Specify a SELECTstatement följande SQL-fråga i text-

fältet:
SELECT *

FROM Titles

WHERE Copyright = 2009;

Klicka på Next (OBS! inte på finish!). Dialogrutan Choose Methods to

Generate dyker upp. Ändra de förvalda namnen FillBy till FillCopy2009

och GetDataBy till GetDataCopy2009. Klicka nu på finish för att återvän-

da till DataSet Designer.

 195

 Upprepa förfarandet: Markera TitlesTableAdapter i rutan som visar tabel-

len Titles, högerklicka och välj Add Query… . Gå vidare i de två följande

dialogrutorna genom att klicka på Next.

 Skriv i dialogrutan Specify a SELECTstatement följande SQL-fråga i text-

fältet:
SELECT *

FROM Titles

WHERE EditionNumber > 4;

Klicka på Next (OBS! inte på finish!). Dialogrutan Choose Methods to

Generate dyker upp. Ändra de förvalda namnen FillBy till FillEdNo4 och

GetDataBy till GetDataEdNo4. Klicka nu på finish för att återvända till

DataSet Designer.

 Upprepa förfarandet: Markera TitlesTableAdapter i rutan som visar tabel-

len Titles, högerklicka och välj Add Query… . Gå vidare i de två följande

dialogrutorna genom att klicka på Next.

 Skriv i dialogrutan Specify a SELECTstatement följande SQL-fråga i text-

fältet:

SELECT *

FROM Titles

ORDER BY BookTitle;

Klicka på Next (OBS! inte på finish!). Dialogrutan Choose Methods to

Generate dyker upp. Ändra de förvalda namnen FillBy till FillOrderBy och

GetDataBy till GetDataOrderBy. Klicka nu på finish för att återvända till

DataSet Designer.

 Kompilera och kör. Testa dina SQL-frågor från ComboBoxen. Så här kom-

mer körresultaten med den 1:a, 2:a och 5:e SQL-satsen i i ComboBoxens

dropplista att se ut:

 196

Ytterligare två körresultat som inte visas här, kan fås med den 3:e och 4:e

SQL-satsen i ComboBoxens dropplista.

 197

5.6 Att skapa och designa en databas i C#

Hittills har vi arbetat med den redan befintliga databasen Books.mdf. Men hur

kommer en sådan databas till? En sak är ju att öppna och visa innehållet av en

befintlig databas och skicka några SQL-satser till den och få svar. En annan sak är

det att skapa en ny databas, att kanske t.o.m. designa den dvs ge den en struktur

genom att ställa upp tabeller, bestämma tabellernas relationer, ange primär- och

främmande nycklar bland tabellernas kolumner osv. Detta kräver kunskap om

design och modellering av databaser. Databasmodellering och -design är ett ämne

som har beröringspunkter med programmering – ganska liknande problemlösning

med algoritmer, deras beskrivning med flödesschema och UML modellering. Mo-

delleringsproblematiken finns alltid med och måste lösas innan vi fysiskt skapar

databasen. Modellen av en databas måste finnas innan vi implementerar den ge-

nom att skapa tabeller, relationer, nycklar och andra databasobjekt.

I detta avsnitt ska vi designa en databas och implementera modellen genom att:

 skapa en tom databas i en C# Windows Forms Application, etablera kon-

takt med den och fylla den med tabeller,

 specificera tabellernas kolumner samt deras datatyper,

 definiera tabellernas primär- och främmande nycklar,

 bestämma relationer mellan databasens tabeller,

 fylla tabellerna med data.

För att uppnå dessa mål behöver vi en konkret fallstudie: Låt oss anta att vi har en

kund som bedriver en kursverksamhet och vill datorisera sin verksamhet i form av

en effektiv och stabil databas med vissa funktionaliteter. Vi går till ett första samtal

och lyssnar på kundens behov. Så här lyder kundens kravspecifikation:

Kunden berKunden beräättar:ttar:

“ Vi anordnar kurser ledda av instruktörer inom data och

management. Varje kurs har en kod, ett namn och en

längd. Två av våra mest populära kurser heter “Inledning

till UNIX” och “Programmering med C++”. Kursernas längd

varierar mellan två och fem dagar. Två av våra bästa in-

struktörer heter Paul Rogers och Maria Gonzales. I våra

underlag behöver vi namn och telefonnr till varje instruktör.

Till varje kursdeltagare antecknar vi namn, telefonnr och

e-mailadress.”

Projekt KursverksamhetProjekt Kursverksamhet

Vilka tabellertabeller, vilka kolumnerkolumner, vilka relationerrelationer?

 198

Databasmodellering

Tillbaka från kundsamtalet är vi helt ställda mot väggen: Hur ska vi skapa en data-

bas som svarar mot kundens kravspecifikation? Men som tur är kommer vi ihåg

vår kompis Kalle som har läst en kurs i databasmodellering. Vi mailar Kalle kun-

dens beskrivning och får tillbaka följande diagram (Kalles modell):

Kalle skriver att detta är ett s.k. ER-diagram där ER står för Entity-Relationship.

ER-modellering är en standard inom databasmodellering som lagrar all information

i s.k. entiteter. En entitet är ett nyckelbegrepp, något viktigt för verksamheten –

reellt eller virtuellt – som man behöver lagra information om – jämförbart med

klasser i objektorienterad programmering. Kalle har utifrån kundens berättelse

kommit fram till att entiteterna i detta projekt är KURSER, KURSDELTAGARE och IN-

STRUKTÖRER. Det är de som vi måste lagra information om. För varje entitet har

Kalle ritat en ruta i diagrammet ovan. Han lägger till att vid implementeringen av

modellen alla entiteter i modellen borde göras till tabeller. I varje entitets ruta står

ett antal attribut dvs egenskaper som vid implementeringen ska bli kolumner. Kalle

har även avgjort vilka kolumner som ska bli nycklar: PK (Primary Key) står för

primärnyckel och FK (Foreign Key) för främmande nyckel. Enligt Kalles modell

ska varje tabell ha en primärnyckel. Relationerna är ritade mellan tabellerna och de

främmande nycklarna. Vi tar Kalles modell som en plan för att bygga en databas i

C# för projektet Kursverksamhet.

Steg 1: Att skapa databasen Kursverksamhet

 Skapa en Windows Forms Application av typ C# Windows Forms App

(.NET Framework) och döp den till Kursverksamhet.

 Gå till Solution Explorer, markera projektnamnet Kursverksamhet och hö-

gerklicka på det. Välj Add  New Item.... Dialogrutan Add New Item dy-

ker upp. Scrolla ner den mellersta kolumnen och välj Service-based Data-

 199

base. Skriv i textfältet Name: Kursverksamhet.mdf. Klicka på Add. Du

har skapat en ny, tom databas: I Solution Explorer har kommit till lag-

ringsfilen Kursverksamhet.mdf för den nya databasen. Markera den, hö-

gerklicka och välj Open.

 Ett nytt fönster öppnas i Visual Studio:

Server Explorer. Dock fönstret. Höger-

klicka på Kursverksamhet.mdf i det nya

fönstret och välj Modify Connection… .

En ny ruta öppnas (till höger): Klicka

på Test Connection för att kolla om du

är ansluten till databasen. Om ja, med-

delas: Test connection succeded. Klic-

ka på OK i båda rutor.

Steg 2: Att skapa tabeller i databasen

 Markera Tables i Server Explorer och högerklicka på det. Välj Add New

Table. En ny flik öppnas och fyller hela stora fönstret i mitten. Den heter

dbo.Table[Design] och består av tre delfönster: I det undre delfönstret (fli-

ken T-SQL), står SQL-kod som skapar en tabell. Den inleds på rad 1 med:

 200

CREATE TABLE [dbo].[Table]

dbo står för database owner och sätts automatiskt framför tabellnamnet

för att skilja mellan olika användares tabeller med ev. samma namn. Gå

dit med musen och ersätt tabellnamnet med Kurser:

CREATE TABLE Kurser

Därmed har vi enligt Kalles modell (sid 198) döpt tabellen till Kurser.

 Fliken dbo.Table[Design] (vänster ovan) har nu döpts om till dbo.Kurser-

[Design]. I den övre delen av den finns det en rubrikrad med Name, Data

Type, Allow Nulls, Default och under den textfältet där vi kan mata in våra

kolumners uppgifter.

 Enligt Kalles modell ska första kolumnen vara KursID: Ändra i textfältet

under rubriken Name den redan befintliga texten Id till KursID. Gå vidare

till textfältet under rubriken Data Type och välj int som datatyp om det in-

te redan står där. Tillåt i denna kolumn inga Null-värden, dvs inga tomma

celler. Bocka därför inte Allow Nulls.

 Kolumnen KursID ska bli primärnyckel i tabellen Kurser. Nyckelsymbolen

står redan till vänster om KursID.

 Dessutom ska kolumnen KursID vara Identity. I Microsoft SQL Server kal-

las den kolumn som ska automatiskt få en sekvens av löpande nummer för

Identity. Det är inte samma sak som primärnyckel, utan en automatisk

numrering av raderna med ett startvärde (Identity Seed) och ett steg (Iden-

tity Increment). Högerklicka i tabellens rubrikrad, t.ex. höger om rubriken

Name, avbocka Default och bocka för Identity, Identity Seed och Identity

Increment. Default tas bort och dessa tre tillfogas rubrikraden. Bocka för

rutan under Identity. Låt både Identity Seed och Identity Increment ha

värdet 1. Du får numera inte ge denna kolumn några värden själv, när du

lägger in data i tabellen, eftersom den får sina värden automatiskt.

 Skapa ytterligare tre kolumner i tabellen Kurser: Namn, Längd och InstID,

enligt Kalles databasmodell. Ge till Namn datatypen nvarchar(50), bocka

annars för ingenting. Ge till Längd datatypen int, bocka för Allow Nulls.

Ge till InstID datatypen int, bocka annars för ingenting.

Update:

 Klicka på knappen Update (ovanför rubriken Name) för att spara allt i da-

tabasen. Bekräfta genom att klicka på Update Database. Om detta mot

förmodan inte skulle fungera, spara allt med File  Save All, stäng Visual

Studio, öppna det igen och öppna även igen projektet Kursverksamhet. En

sådan ”omstart” hjälper ibland.

 Högerklicka på Kursverksamhet.mdf i Server Explorer-fönstret och välj

Refresh. Den nya tabellen Kurser dyker upp under Tables. Expandera den

 201

för att se kolumnerna vi just skapade. Till slut borde du ha följande bild

som design för tabellen Kurser:

 Börja om att skapa ytterligare två tabeller Kursdeltagare och Instruktörer

enligt Steg 2 (sid 199): Server Explorer  Tables  Add New Table. Än-

dra koden till de nya tabellnamnen. Skapa i varje tabell kolumner enligt

vår modell genom att följa instruktioner för tabellen Kurser. Definiera pri-

märnyckeln till varje tabell. Tilldela Identity-egenskapen till alla tabellers

primärnycklar. Se upp för steget Update på förra sidan. Efter att ha skapat

t.ex. tabellen Kursdeltagare ser det ut så här:

 202

 Gör samma sak för tabellen Instruktörer med sina resp. kolumner enligt

Kalles databasmodell. Slutligen borde tabellen Instruktörer:s definition se

ut så här:

Samtidigt är detta tabellen Instruktörer:s tabelldefinition som man även får i efter-

hand genom att i Server Explorer högerklicka på tabellen Instruktörer och välja

Open Table Definition. Samma sak kan man göra med de andra tabellerna.

Nu har vi skapat alla tabeller vi behöver i projektet Kursverksamhet och även defi-

nierat tabellernas primärnycklar enligt projektets databasmodell. Det som kvarstår

är att definiera främmande nycklar och att skapa relationer enligt modellen.

Steg 3: Att koppla projektets Dataset till databasen

För att skapa relationer och definiera främmande nycklar – vilket är samma sak –

kommer vi att använda oss av ett grafiskt verktyg i Visual Studio som heter XML

Schema, ett diagram som visar strukturen till en databas – den digitala varianten till

Kursverksamhetens databasmodell som Kalle ritade åt oss i början av detta avsnitt.

Det kallades för ER-diagram (sid 198). XML diagrammet lagras i Visual Studio i en

fil av typen XML Schema document som får ändelsen xsd. I våra tidigare projekt

har vi redan visat diagrammet, se DataSet Designer (sid 182). Att det inte dykt upp

i detta projekt beror på att xsd-filen är relaterad till ett s.k. Dataset. Och ett sådant

har vi inte definierat än i projektet. Det ska vi göra nu och – när vi gjort det – kopp-

la det till projektets databasfil Kursverksamhet.mdf. Gör så här:

 Gå i huvudmenyraden till menyn PROJECT och välj PROJECT  Add New

Data Source… . Gå till Solution Explorer och klicka på projektnamnet

Kursverksamhet. Gå till fönstret Data Sources och klicka på länken Add

New Data Source... . Du får följande dialogruta som frågar efter typen av

datakälla som vi har i projektet:

 203

 Markera Da-

tabase under

frågan Where

will the appli-
cation get da-

ta from? Klic-

ka på Next.

 Nästa dialog-

ruta frågar ef-

ter typen av

databasmo-

dell. Här defi-

nieras det Da-

taset som vi

nämnde ovan.

Det kommer

att tillfogas

till projektet i

form av en fil.

Markera Da-

taset och klic-

ka på Next.

 Nästa dialog-

ruta som inte

visas här heter
Choose Your
Data Connec-

tion. Klicka

på knappen
New Connec-

tion… .

 Du får ytter-

ligare en dialogruta som heter

Add Connection (bilden till

höger). Skriv Kursverksam-

het.mdf i textfältet Database file

name (new or existing). Kilcka

på OK.

 Du återvänder till dialogrutan

Choose Your Data Connection,.

Klicka på Next.

 204

 I nästa och sista dialogruta som visas på följande bild ska du välja de

delar av databasen, s.k. databasobjekt (tabeller, vyer, lagrade procedurer,

funktioner osv.) som du vill använda i detta projekt. Vår databas har bara

tabeller. Så bocka den lilla rutan vänster om Tables. Samtidigt kan du, om

du expanderar Tables med den lilla pilen till vänster och gör samma sak

med alla tabeller, se hela databasen Kursverksamhet:s struktur. Du får en

inblick i databasens innehåll. Det finns även möjligheten att ge hela Data-

set ett nytt namn i textfältet

DataSet name. Vi har ingen

anledning att ändra det för-

valda namnet Kursverksam-

hetDataSet. Så klicka på Fi-

nish.

Som en för oss viktig konsekvens av

proceduren ovan har det nu i Solution

Explorer skapats filen Kursverksam-

hetDataSet.xsd, vilket gör att vi kan ta

fram det diagram som behövs för att

på ett enkelt sätt skapa relationer mel-

lan våra tabeller och definiera främ-

mande nycklar. Innan vi gör det följer

lite förklaring av dessa begrepp.

 205

Steg 4: Att skapa relationer mellan tabeller

Vi avbildar än en gång

Kalles modell till pro-

jektet Kursverksamhet

för att vi behöver att

hänvisa till den hela ti-

den. Att skapa relatio-

ner mellan tabeller och

att definiera främmande

nycklar, s.k. Foreign

Keys (FK) är två olika

uttryckssätt för en och

samma sak. Vilka de

främmande nycklarna

ska vara, framgår av da-

tabasmodellen till hö-

ger. En främmande nyc-

kel (FK) i en tabell,

t.ex. KursID i tabellen Kursdeltagare, är en primärnyckel (PK) i en annan tabell,

nämligen i tabellen Kurser. FKn KursID i Kursdeltagare lagrar informationen om i

vilken kurs en elev deltar. Linjen i diagrammet mellan tabellerna Kurser och Kurs-

deltagare symboliserar denna relation. Gaffelsymbolen intill tabellen Kursdelta-

gare talar om att det i denna tabell finns en FK som refererar till tabellen Kurser:s

PK, inte tvärtom. Dvs en kurs kan ha många elever, medan en elev deltar endast i

en kurs. Det kan vara annorlunda i vissa skolor, men just i vår modell är det så,

åtminstone enligt den föregivna modellen på förra sidan. Vår kunds berättelse (sid

197) motsäger inte detta. FK-kolumnen KursID i Kursdeltagare kommer att ha sam-

ma värden som PK-kolumnen KursID i Kurser. Efter att vi definierat relationen

(med tillhörande FK) i databasen kommer ingen användare av databasen att kunna

lägga in värden i FK-kolumnen KursID i Kursdeltagare som inte finns i PK-kolum-

nen KursID i Kurser. I praktiken innebär detta att en elev inte kan gå på en kurs

som inte finns i tabellen Kurser.

Samma sak är det med den andra relationen mellan tabellerna Instruktörer och

Kurser: FKn InstID i tabellen Kurser lagrar informationen om i vilken kurs en in-

struktör undervisar. Linjen mellan tabellerna Instruktörer och Kurser med gaffel-

symbolen intill Kurser talar om att det i tabellen Kurser finns en FK, nämligen

InstID, som refererar till tabellen Instruktörer:s PK, inte tvärtom. Dvs en instruktör

kan undervisa i många kurser, medan en kurs har endast en instruktör. FK-kolum-

nen InstID i Kurser kommer att ha samma värden som PK-kolumnen InstID i In-

struktörer. Efter att vi definierat relationen (med tillhörande FK) i databasen kom-

mer ingen användare av databasen att kunna lägga in värden i FK-kolumnen InstID

i Kurser som inte finns i PK-kolumnen InstID i Instruktörer. I praktiken innebär det-

ta att en kurs inte kan ha en instruktör som inte finns i tabellen Instruktörer.

 206

Det vi ska göra nu är att implementera denna modells relationer i Visual Studio,

närmare bestämt i SQL Server som används här mer som en databashanterare, vil-

ket är möjligt pga integrationen av Microsoft SQL Server i Visual Studio.

Vi använder oss av de grafiska verktyg i Visual Studio för att rita relationerna mel-

lan databasens tabeller.

Steg 5: Att ta fram databasdiagrammet DataSet Designer

 Markera i Solution Explorer KursverksamhetDataSet.xsd, högerklicka

och välj View Designer för att se databasen Kursverksamhet:s struktur i ett

diagram med alla tabeller och kolumner som vi skapat i detta projekt.

 Ställ om med musen tabellerna i diagrammet så att de står relativ till va-

randra ungefär så som de är ritade i vår modell på förra sidan.

 Markera exakt den lilla

nyckeln i tabellen Kurser:s

kolumn KursID. Högerklic-

ka och välj Add  Rela-

tion… . Dialogrutan Rela-

tion kommer upp. Skriv i

textfältet Name: Kurser_-

Kursdeltagare. Välj som

Parent Table: Kurser och

som Child Table: Kursdel-

tagare. Välj under Co-

lumns: som Key Columns

KursID och som Foreign

Key Columns också Kurs-

ID. Välj under Choose

what to create radioknap-

pen Both Relation and Fo-

reign Key Constraint. Av-

sluta med OK. Se bilden till

höger.

 207

 Gör liknande med den andra rela-

tionen mellan tabellerna Instruk-

törer och Kurser: Få upp dialog-

rutan Relation med högerklick på

den lilla nyckeln i tabellen Instruk-

törers kolumn InstID. Sedan: Add

 Relation… . Skriv i Name: In-

struktörer_Kurser. Välj som Parent

Table: Instruktörer och som Child

Table: Kurser, som Key Columns

InstID och som Foreign Key Co-

lumns också InstID. Välj Both Re-

lation and Foreign Key Constraint.

Avsluta med OK.

Så här borde nu databasdiagrammet i Visual

Studio se ut.

 DataSet Designer:

Steg 6: Att lägga in data i tabellerna

 Expandera i Server Explorer Tables och högerklicka på tabellen Instruk-

törer. Välj Show Table Data. Mata in de två instruktörer som nämns i kun-

dens berättelse på sid 197 osv. Resultatet visas på nästa sida.

Observera att man inte kan mata in några värden för kolumnen InsID,

därför att den är definierad som Identity. Vi har ju själva, när vi designade

tabellen Instruktörer, bestämt att InstID ska vara Identity. När vi designade

tabellen Kurser anmärkte vi att det inte går att själv sätta värden på ko-

lumner som har Identity-egenskapen (sid 200). Deras värden bestäms

 208

automatiskt. Meningen med att lägga in data i tabellerna är alltså – just i

det här fallet – att lägga in data i kolumnerna Namn och Telnr.

 Expandera i Server Explorer Tables och högerklicka på tabellen Kurser.

Välj Show Table Data. Mata in de två kurser som nämns i kundens berät-

telse på sid 197. Så här blir blir det:

 209

I denna tabell har vi bestämt att kursen Inledning till Unix undervisas av instruktör

med InstID 2. Och när vi tittar i tabellen Instruktörer kan vi konstatera att det är Ma-

ria Gonzales som har InstID 2. Dvs Maria Gonzales undervisar kursen Inledning till

Unix. På exakt samma sätt hittar SQL denna information, om vi t.ex. skickar följan-

de SELECT-sats till databasen:

SELECT Instruktörer.Namn, Kurser.Namn

FROM Instruktörer, Kurser

WHERE Instruktörer.InstID = Kurser.InstID;

Den här varianten av SELECT-satsen är lite mer avancerad så att vi inte tagit upp

den i bokens introduktion till SQL (sid 168). Konstruktionen kallas JOIN och ger ett

smakprov på vad SQL kan åstadkomma. Villkoret i WHERE-satsdelen kallas JOIN-

villkoret. I FROM-satsdelen kopplas ihop två tabeller – därför JOIN. Ur mängden av

kombinationer av alla rader från tabellen Instruktörer med alla rader från tabel-

len Kurser selekterar JOIN-villkoret bara de rader där de båda instruktörsnumren

(InstID) överensstämmer. Namnen på instrktörer och deras resp. kurser skrivs ut.

Vi kommer att få informationen att Maria Gonzales undervisar kursen Introduktion

till Unix och Paul Rogers kursen Programmering med C++.

 Mata in data efter eget godtycke till tabellen Kursdeltagare och även fler

data till både tabellen Kurser och Instruktörer.

 Spara hela projektet med  File  Save All.

 210

5.7 Att förse databasen med funktionaliteter

Databasen vi skapade i förra avsnitt var väldigt enkel. Den hade visserligen tabel-

ler, nycklar och relationer. Men den saknade helt och hållet funktionaliteter, t.ex.

en sökfunktion som hjälper oss att hitta information i databasen. Sådana funktio-

naliteter ska vi bygga in i en ny exempeldatabas som vi kommer att använda i detta

projekt. Den är lagrad i filen AddressBook.mdf som du kan ladda ner filen från

webbsidan www.taifun.se: Klicka där på boken Programmering 2 med C#:s om-

slagsbild, sedan på länken AddressBook.mdf. En zip-fil laddas ned: extrahera den.

I det här avsnittet kommer vi att utveckla projektet AddressBook och lära oss att:

 inkludera exempeldatabasen AddressBook.mdf i ett projekt av typen C#

Windows Forms Application och använda den som lagringsplats för våra

kompisars adressuppgifter.

 låta databasen själv skapa sina Labels och Textboxar.

 tillfoga funktionaliteter till databasen.

Gör så här:

 Skapa en Windows Forms Application och döp den till AddressBook. Än-

dra formfönstrets rubrik och storlek enligt följande:

Form1:

Egenskap Värde
Text AddressBook

Size 520; 500

 Stäng fönstret Server Explorer på vänstersidan, om det fortfarande är öp-

pet. Öppna istället fönstret Data Sources, så här:

 Skriv i textfältet Search i menyraden längst till höger Data Sources. Klic-

ka på den lilla triangeln ovan på rubrikraden och välj Dock. Klicka i Data

Sources-fönstrets menyrad på ikonen Add New Data Source. Välj i dia-

logrutan Choose a Data Source Type, Database och klicka på Next. Välj i

nästa dialogruta Choose a Database Model, Dataset och klicka på Next.

 I Choose Your Data Connection, klicka på knappen New Connection… för

att öppna dialogrutan Add Connection. Låt i textfältet Data source stå

Microsoft SQL Server Database File (SqlClient).

 Klicka på Browse-knappen och navigera genom filsystemet på din dator

för att ladda filen AddressBook.mdf till projektet. Klicka på OK. Visual

Studio vill vill uppgradera databasfilen så att den blir kompatibel med din

nyaste version av Visual Studio. I så fall svara bara ja.

 211

 Du återvänder till dialogrutan Choose Your Data Connection, bara att det

nu har tillfogats namnet på databasfilen du valt i förra steg, nämligen Add-

ressBook.mdf. Klicka på Next. Svara Ja på frågan om du vill kopiera filen

till ditt projekt.

 I nästa dialogruta som heter Save the Connection String to the Application

Configuration File är namnet AddressBookConnectionString redan förvalt

för den förbindelse du skapade ovan. Bocka för lilla rutan Yes, save the

connection as: (om den inte redan är förbockad) och klicka på Next.

 I Choose Your Database Objects välj Tables. Expandera Tables samt ta-

bellen Addresses. Behåll det förvalda namnet AddressBookDataSet som

DataSet name. Avsluta med Finish.

 Du återvänder till din ursprungliga miljö. I Solution Explorer har kommit

till: AddressBook.mdf. Markera den, högerklicka och välj Open. Server

Explorer-fönstret öppnas till vänster med den nya databasens innehåll.

 Även Data Sources visar den nya databasens innehåll under DataSet-

namnet AddressBookDataSet: Den har endast en tabell som heter Addres-

ses och har fem kolumner. Expandera tabellen Addresses.

Automatiska Labels och Textboxar

Här vill vi låta databasen själv skapa Labels och Textboxar.

 Markera tabellen Addresses i fönstret Data Sources. Observera att det till

höger om namnet Addresses finns en dropplista. Klicka på dropplistans

lilla pil för att se alternativen. Klicka på Details. På ytan hander ingenting.

Men i själva verket har du valt att ha ett detaljerat grafiskt gränssnitt på

din form, när du med musen drar tabellen Addresses från Data Sources

till formen. Istället för att få en DataGridView samt en BindingNavigator,

vilket är default-alternativet som valdes i vårt första databasprojekt First-

Database, får du nu en helt annorlunda bild. Gör nu följande för att se:

 Markera tabellen Addresses i Data Sources och dra den med musen (ge-

nom att hålla ned den vänstra musknappen) till formen. Det skapas fem

par Label- och TextBox-kontroller som motsvarar tabellen Addresses’ fem

kolumner. Ja, t.o.m. kolumnrubrikerna hamnar som text från databasen på
Label-kontrollerna. Även en BindingNavigator följer med som lägger sig

under formrubriken. Placera med musen gruppen med fem Labels och fem

Textboxar i den övre delen av formfönstret, en bit under BindingNavigator,

centrerat horisontellt.

 Klicka på formens lediga plats. Markera TextBoxen som står höger om La-

beln Address ID. Gå till Properties-fönstret och ändra denna TextBox’ vär-

de för ReadOnly-egenskapen till True, eftersom databaskolumnen Add-

 212

ress ID som motsvarar denna TextBox borde vara en Identity vars värden

genereras automatiskt och inte får överskrivas av databasens användare:

addressIDTextBox:

Egenskap Värde
ReadOnly True

 Kompilera och kör. Observera att tabellen Addresses är tom. Bilden ne-

dan visar hur resultatet av en körning borde bli. Behåll körläget.

 Testa projektet. Inled in-

matningen av en post

alltid med BindingNavi-

gatorns + knapp (Add

New). Mata in t.ex. för-

och efternamn, emailad-

ress och telefonnr till

dina kompisar. Skriv in

data i textfälten och av-

sluta posten med Save

Data-knappen. Efter att

ha matat in några poster

kan du testa hur navige-

ringsknapparna och De-

lete-knappen fungerar.

Att lägga till egna funktionaliteter

 För att kunna söka efter en viss post i tabellen, genom att t.ex. ange efter-

namnet, måste vi lägga till en SQL-fråga till tabellens TableAdapter-klass.

Gå till fönstret Data Sources, högerklicka på tabellen Addresses i och välj

Edit Data Set with Designer. Databasens diagram dyker upp som består av

en anda ruta som representerar tabellen Addresses. Markera den, höger-

klicka på AddressesTableAdapter längst ned och välj Add Quer. Table-

Adapter Query Configuration Wizard öppnas. Klicka dig fram med Next,

utan att ändra något, till dialogrutan Specify a SQL SELECT statement.

Skriv in SQL-satsen:

SELECT *

FROM Addresses

WHERE LastName = @lastname;

@ framför lastname gör att @lastname blir en variabel parameter som

kommer att ersättas av ett värde när SQL-frågan exekveras. Klicka på Next

(OBS! inte på finish!).

 213

 Ändra i Wizardens nästa dialogruta Choose Methods to Generate de för-

valda namnen FillBy och GetDataBy till FillByLastName och GetDataBy-

LastName. Klicka på finish. Observera att de två nya metoder som inne-

håller SQL-satsen ovan (inkl. parametern @lastname), har kommit till

under AddressesTableAdapter.

 Återvänd till Form1:s design. Stäng fönstret Data Sources till vänster.

Öppna istället Toolbox från huvudmenyraden: View  Toolbox. Expan-

dera All Windows Forms. Hämta en GroupBox-kontroll till formen. Gör

följande ändringar i GroupBox-kontrollens egensakper:

groupBox1:

Egenskap Värde
Location 20; 260

Size 450; 70

Text Hitta en post via efternamnet:

 Impandera (krymp) All Windows Forms och expandera Common Controls.

Markera GroupBox-kontrollen i formen. Dubbelklicka i Toolbox på kon-

trollen Label så att den hamnar i GroupBoxen. Gör följande ändringar i

Label-kontrollens egensakper:

label1:

Egenskap Värde
Location 6; 38

Text Last Name

 Markera GroupBox-kontrollen i formen. Dubbelklicka i Toolbox på kon-

trollen TextBox så att den hamnar i GroupBoxen. Gör följande ändringar i

TextBox-kontrollens egensakper:

textBox1:

Egenskap Värde
Location 100; 35

Size 200; 30

 Markera GroupBox-kontrollen i formen. Dubbelklicka i Toolbox på kon-

trollen Button så att den hamnar i GroupBoxen. Gör följande ändringar i

Button-kontrollens egensakper:

button1:

Egenskap Värde
Location 360; 30

Size 75; 35

Text Sök

 214

 Lägg dessutom en Återställ-knapp under GroupBoxen längst ned i formen.

Dvs markera formen. Dubbelklicka i Toolbox på kontrollen Button. Gör

följande ändringar i Button-kontrollens egensakper:

Button2:

Egenskap Värde
Location 190; 375

Size 130; 35

Text Återställ

Kompilera och kör. Så här borde resultatet av en körning bli:

Just nu kan man bara lägga in poster (rader). Sök- och Återställ-knapparna ger inget

resultat eftersom det inte finns någon kod bakom dem. Stäng körningen och åter-

vänd till designläget. För att ge liv åt Sök- och Återställ-knapparna gör så här:

 Dubbelklicka på Sök-knappen och lägg in kod i kroppen till händelse-

metoden button1_Click() i klassen Form1 enligt nedan.

 För att kunna fortsätta med att navigera genom tabellens alla rader, efter

att man sökt en speciell post via efternamnet, dubbelklicka på Återställ-

knappen och lägg in kod i kroppen till händelsemetoden button2_-

Click() i klassen Form1 enligt nedan.

 215

// Form1.cs i projektet AddressBook

// Data från en databas kan visas, läggas till eller tas bort

// Funktionalitet: Skickar en SQL-fråga från en Button

// Söker via efternamn och visar den sökta radens innehåll

using System;

using System.Windows.Forms;

namespace AddressBook

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 private void addressesBindingNavigatorSaveItem_Click(

 object sender, EventArgs e)

 {
 this.Validate();

 this.addressesBindingSource.EndEdit();

 this.tableAdapterManager.UpdateAll

 (this.addressBookDataSet);

 }

 private void Form1_Load(object sender, EventArgs e)

 {
 this.addressesTableAdapter.Fill

 (this.addressBookDataSet.Addresses);

 }

 private void button1_Click(object sender, EventArgs e)

 {
 addressesTableAdapter.FillByLastName(

 addressBookDataSet.Addresses, textBox1.Text);

 }

 private void button2_Click(object sender, EventArgs e)

 {
 addressesTableAdapter.Fill

 (addressBookDataSet.Addresses);

 textBox1.Text = "";

 }
 }
}

 Kompilera och kör. Mata in ett antal poster i databasens tabell Addresses.

Testa applikationens alla möjligheter.

 216

Övningar till kap 5

Bakom länken Databaser hittar du kap 5:s PowerPoint-bilder.

I extra materialet Mängder kan du läsa om mängder och mängdoperationer.

5.1 En fabrik tillverkar tuschpennor i tre olika storlekar: liten, mellan och

stor och i fyra olika färger: blå, svart, röd och grön.

Låt A vara mängden av alla storlekar och B mängden av alla färger av de

tuschpennor som fabriken tillverkar.

a) Läs om cartesiska produkten på sid 82. Bilda den cartesiska produkten

 A x B.

b) Hur många olika typer av tuschpennor tillverkar fabriken?

c) Beskriv fabrikens sortiment i en tabell.

En butik som köper av denna fabrik, lagerför endast mellanstorleken i al-

la färger och storleken liten i blå. Låt R beteckna mängden av de ordnade

par som butiken lagerför.

a) Bilda mängden R.

b) Hur många olika typer av tuschpennor lagerför butiken?

c) Ställ upp relationen R (butikens sortiment) i tabellform.

5.2 En möbeltillverkare producerar fem möbeltyper: skåp, bord, säng, stol,

soffa i tre olika träslag: björk, ek, bok. Möblerna tillverkas oljade, målade

eller obehandlade.

En av tillverkarens kunder, en möbelaffär lagerför bord och stolar av

björk eller ek som är oljade eller målade.

a) Hur många modeller lagerför möbelaffären?

b) Ställ upp en tabell över de möbelmodeller (typ, träslag, behandling)

 möbelaffären lagerför.

5.3 En bostadsförening lagrar data om sina medlemmar i en tabell, kallad

Members. Tabellens första 6 rader ser ut så här:

No First name Last name Birth date
1 Peter Larsson 1971

2 Emma Carlsson 1949

3 Ingrid Lundquist 1998

4 Hans Lundquist 2000

5 Emma Pettersson 1976

6 Germund Dahlquist 1980

Skriv en SQL-sats som ger en lista över de medlemmar som:

a) heter Emma i förnamn. Listan ska innehålla all tillgänglig information

 om medlemmarna. Visa även svaret på din SQL-fråga.

http://www.taifun.se/images/stories/Databaser.pdf
http://www.taifun.se/images/stories/Mangder.pdf

 217

b) heter Lundquist i efternamn. Listan ska innehålla endast medlemmar-

 nas för- och efternamn. Visa även svaret på din SQL-fråga.

c) är födda senare än 1975. Listan ska innehålla endast medlemmarnas

 medlemsnr. och födelseår. Visa även svaret på din SQL-fråga.

5.4 När man exekverar projektet FirstDa-

tabase (sid 179) med de uppgifter som

anges i projektets beskrivning får man

fönstret som är avbildad till höger.

Gör följande ändringar i projektet för

att modifiera och vidareutveckla det:

a) Ändra formfönstrets storlek för att

 vid exekvering se hela innehållet i

 tabellen Authors utan att behöva justera utskriftsfönstret efteråt.

b) Modifiera projektet så att det vid exekvering visar innehållet i tabel-

 len Titles istället för tabllen Authors. Se till att navigeringsmenyn

 (längst upp) är kvar.

c) Gör samma sak som i b) med tabellen AuthorISBN.

5.5 Ladda ned databasfilen AddressBook.mdf på samma sätt som du gjorde

med Books.mdf. Skapa ett nytt projekt Ovn_5_5 i Visual Studio och ge-

nomför alla steg som i projektet FirstDatabase (kursboken, sid 179-185).

Vilket innehåll finns i databasfilen AddressBook.mdf?

5.6 I projektet SQLclient (sid 185) hat vi skrivit några SQL-satser och skickat

dem till servern via en en ComboBox’ dropplista. Skriv ytterligare SQL-

satser och exekvera dem i projektet SQLclient. De ska visa följande delar

av databasen Books.mdf:

a) Visa alla boktitlar ordnade efter EditionNumber.

b) Visa alla böcker med Copyright 2008 ordnade efter boktitlar.

c) Visa hela innehållet i tabellen Authors.

d) Visa autorerna ordnade efter deras efternamn.

5.7 Vidareutveckla projektet Kursverksamhet (sid 198-209) genom att lägga

till ytterligare data till de befintliga tabellerna Kurser, Kursdeltagare och

Instruktörer. Visa tabellernas innehåll i en DataGridView-kontroll när man

kör projektet, på samma sätt som i projektet SQLclient (sid 185).

a) Lägg till ytterligare tre valfria kurser till tabellen Kurser.

b) Lägg tio elever i tabellen Kursdeltagare. Tilldela varje elev till endast

 en kurs.

c) Lägg till ytterligare två instruktörer till tabellen Instruktörer. Avgör

 själv vilka instruktörer ska undervisa i vilka kurser.

d) Visa eleverna ordnade efter deras förnamn.

 218

5.8 Exekvera projektet AddressBook (sid 210) och mata in via det grafiska

gränssnittet följande data till tabellen Addresses:

First name Last name Email Phone Number
Hans Riesel hriesel@kth.se 073 765 28 32

Emma Carlet ecarlet@lbs.se 070 329 56 79

Ingrid Mellinder imellind@ih.se 08 792 37 54

Ian Cohen icohen@kth.se 073 562 29 02

Erik Pettersson epetter@lbs.se 070 562 30 69

Germund Dahlquist gdahlq@kth.se 070 863 92 12

Se till att du inleder inmatningen av varje post med BindingNavigatorns +

knapp (Add new) samt avslutar med Save Data-knappen.

a) Använd sedan Sök-knappen för att ta reda på Germunds emailadress.

b) Gör samma sak med Eriks telefonnummer.

c) Ta bort Ingrids post från tabellen och lägg istället till en valfri post.

d) Lägg till ytterligare en SQL-fråga till tabellen Addresses som letar ef-

 ter en post via förnamnet.

e) Ta reda på med Sök-knappen Ians efternamn.

5.9 Human Resources (Projekt) Studera databasen HR (Human Re-

sources) vars diagram visas på nästa sida. Diagrammet visar sju tabeller:

Varje ruta representerar en tabell med resp. kolumner. De kolumn(er)

som bildar tabellens primärnyckel står i fet stil. Identifiera varje tabells

primärnyckel, alla främmande nycklar. Varje främmande nyckel ger

upphov till en relation mellan databasens tabeller. Försök att läsa och

beskriva relationerna 1-10 enligt relationsdatabasmodellen (sid 159).

 219

5.10 Kaffeautomat (Projekt) Du får i

uppdrag att programmera en kaffeauto-

mat som ska användas i en cafeteria.

Uppdragsgivaren förväntar sig ett pro-

fessionellt program som lätt kan uppda-

teras, om man skulle byta till en nyare

automatmodell om något år. Därför anli-

tar man en objektorienterad programme-

rare som även kan databaser. Skriv ko-

den så generellt som möjligt så att pro-

grammet lätt kan modifieras för vilken

varuautomat som helst, dessutom lätt

kan översättas till vilket programme-

ringsspråk som helst.

Projektet går ut på att simulera en kaffeautomat med grafiskt gränssnitt

och en databas som lagrar drycksortimentet samt priserna. Man ska kun-

na variera sortimentet dvs lägga till eller ta bort dryck med tillhörande

pris – en post – från sortimentet, genom att ändra databasen utan att be-

höva ändra programmet.

Börja utan databas

Använd en array av kontroller för dryckernas namn och en annan array

för dryckernas pris. När programmet fungerar och du har lärt dig han-

teringen av databaser kan du koppla kaffeautomaten till en databas. Pro-

grammet ska innehålla en betalningsdel med möjlighet att kunna betala

med fyra olika

myntslag: 10 kr,

5 kr, 1 kr, 50 öre.

Det grafiska

gränssnittet kan

t.ex. se ut som

på bilden till

vänster.

Programmet ska

ha möjligheten

att kunna välja

dryck ur ett sor-

timent med, säg,

fem olika dryc-

ker samt deras

priser.

En växel- och ser-

veringsdel ska in-

 220

gå. Efter val av dryck samt betalning ska rätt växel lämnas tillbaka. En li-

ten bild som föreställer en kopp ska visas upp. I exemplet på bilden har

Cappuchino valts som dryck och ett 10 kr- samt två 1 kr-mynt har betalats.

Gränssnittet ska ha en menyrad med en Exit-funktion för att avsluta och

en Reset-funktion för att nollställa kaffeautomaten.

Komplettera programmet med att ta hand om en eventuellt felaktig eller

otillräcklig betalning från användarens sida.

Växelbeloppet är ett decimaltal i programmet. Men automaten behöver

”veta” hur många av varje myntslag som är tillåtet i automaten – endast

10 kr, 5 kr, 1 kr och 50-öringar  – den ska ge tillbaka. Ett växelbelopp av

t.ex. 12,50 måste omvandlas i ett 10 kr- (eller två 5 kr-), två 1 kr-mynt och

en 50-öring. Dessa antal är heltal. Det decimala växelbeloppet måste de-

las upp i automatens tillåtna mynt”system”. För att åstadkomma denna

omvandling, kan du använda dig av den algoritm som beskrivits tidigare.

Den skiljer sig endast i siffror från den algoritm som används för att om-

vandla ett antal dagar till antal år, månader, veckor och restdagar. Nyc-

keloperationen för alla sådana omvandlingar är modulooperatorn %.

Lägg till databaskoppling

För att underhålla kaffeautomaten över längre tidsperioder, t.ex. för att

kunna ändra sortiment och/eller priser, utan att behöva skriva och kom-

pilera om C#- koden, är det lämpligt att lagra sortiment- och prisinforma-

tionen i en databas och låta C#-programmet hämta aktuell, alltid uppdate-

rad information från databasen.

 Inkluderingen av 50-öringen i myntbetalningen beror inte på nostalgi utan snarare på inter-

nationalisering. Vi vill hålla möjligheten öppen för en överföring av programmet till andra

länder där automater med myntbetalning fortfarande finns. Även ett ev. byte till Euro eller

andra valutor, där den halva valutaenheten finns kvar, ska vara möjligt. Omvandlingen av

växelbeloppet till automatens myntsystem inkluderar en programmeringsteknisk finess som

kan vara värd att lära sig. Logiken inkl. användningen av modulooperatorn % ligger till

grund även för en generell omvandling av det decimala talsystemet till andra system.

 221

När allting fungerar felfritt, kan du ersätta arraysna för namn och pris

med tabeller i en databas. Databaskopplingen ska finnas i en separat form

där det ska finnas möjligheten att radera, lägga till och editera posterna i

databasen.

Lägg till i menyraden ett menyval för att ladda databasformen.

Utskriften av menyn samt priserna som visades i början inte behöver

hårdkodas i C# utan blir resultat av en hämtning (SELECT-sats) från data-

basen. På så sätt kan man alltid aktualisera menyn genom att uppdatera

databastabellen.

Fortsätt med att registrera även varje transaktion i automaten dvs lägga in

den med en INSERT-sats i en annan tabell som sedan kan användas både

för kontroll av automaten och som underlag för ekonomisk redovisning.

Avgör själv vilka uppgifter som är lämpliga att registreras. Skriv dina

SQL-satserna så att de kan inbäddas i C#-kod.

Kaffeautomatkonceptet kan generaliseras inte bara till andra automater

utan även till små och stora butiker eller varuhus.

 222

Fullständiga lösningar till övningar (Facit)

I programmering finns alltid flera möjliga lösningar till en uppgift. Därför är det, som slar-

vigt kallas för lösningar, i själva verket endast lösningsförslag. Till projektuppgifter eller

uppgifter relaterade till ett projekt ges inga lösningsförslag. Istället finns det i projektens ly-

delse ofta en utförlig ledning, ibland en algoritm till lösningen.

Kapitel 1 Algoritmer och programmering, sid 56

Övn 1.1 - 1.20 i kap 1 består av frågor vars svar kan hittas i boken på sidorna 6-14.

Övn 1.21 Följande pseudokod beskriver algoritmen Hårtvätt:

 Start Hårtvätt

 Blöt håret

 SÅ LÄNGE håret känns smutsigt

 massera in shampo

 skölj

 OM solen skiner

 låt håret självtorka
 ANNARS

 använd hårtorken

 Slut Hårtvätt

a) Vilka delar av pseudokoden är instruktioner, vilka är villkor och vilka är kontrollstrukturer?

Förklara ditt svar.

Svar:

Allt som är tryckt i normal stil i texten ovan, är instruktioner, allt som står i kursiv stil, är

villkor och allt som är skrivet i fet, versal stil (annorlunda typsnitt) är kontrollstrukturer.

Start och slut har en särställning, de är varken det ena eller det andra, utan markerar algo-

ritmens början och slut.

Instruktioner är de delar av texten som ska utföras. Man skulle kunna kalla dem även kom-

mandon. Villkor kan inte utföras, utan endast testas vars resultat endast kan vara sant eller

falskt. De kan likställas med frågor vars svar endast kan vara ja eller nej. Svaren avgör vad

som ska göras, dvs vilka (under)instruktioner ska utföras. I hårtvättalgoritmen finns endast

två villkor: håret känns smutsigt och solen skiner. De är kopplade till kontrollstrukturerna

SÅ LÄNGE och OM-ANNARS. Tillsammans styr de algoritmens förlopp.

Kontrollstrukturer är nyckelord vars logiska innebörd är avgörande för förloppet. SÅ

LÄNGE:s logiska betydelse skiljer sig från OM-ANNARS: Det första inleder en repetition,

medan det andra formulerar ett val mellan två alternativ: SÅ LÄNGE håret känns smutsigt

innebär att man måste massera in shampo och skölja ev. flera gånger, medan OM solen skiner

betyder att man antingen låter håret självtorka eller använder hårtorken, beroende på om so-

len skiner, men endast en gång.

b) Dela in instruktionerna i huvud- och underinstruktioner.

Hela algoritmen kan delas in i tre huvud- och fyra underinstruktioner: I pseudokodens text

ovan är de tre huvudinstruktionerna markerade med 1, 2 och 3. De fyra underinstruktionerna

 1

 2

3

 2a

 2b

3a

3b

 223

2a, 2b, 3a och 3b är indragna för att visa att 2a, 2b tillhör huvudinstruktion 2 och att 3a, 3b är

delar av huvudinstruktion 3.

c) Rita ett flödesschema till pseudokoden ovan.

Utgående från analysen av pseudokoden Hårtvätt i a) och b) ges följande förslag till flö-

desschema som är en ren översättning av pseudokoden – en annan form av samma algoritm :

 224

Övn 1.22 Följande algoritm – låt oss kalla den Kalle-algoritmen – är formulerad på

vanligt språk:

På vardagar går Kalle upp. Han tvättar sig, om mamman tittar på.

På söndagar sover Kalle vidare tills mamman ropar ho-

nom till frukost, i så fall gör han som på vardagar.

a) Rita flödesschemat till Kalle-algoritmen. Anta att lördag är en vardag.

 225

b) Översätt flödesschemat till pseudokod.

 Start Kalle

 OM det är söndag

 sover Kalle vidare

 TILLS mamma ropar till frukost

 Kalle går upp

 OM mamma tittar på

 tvättar han sig

 Slut Kalle

c) Finns det i Kalle-algoritmen möjligheten till en evighetsloop? När

 skulle den rent teoretiskt kunna inträffa? Hur kan den förhindras?

Kallealgoritmen innehåller möjligheten till en evighetsloop som kan inträffa om mamma al-

drig ropar till frukost. Möjligheten till en evighetsloop finns i alla loopar.

Om den verkligen inträffar eller ej, beror på hur loopens avslutningsvillkor är formulerat och

hur villkoret realiseras. För att undvika evighetsloop måste villkorets sanningsvärde ändras

under algoritmens realisering. Dvs mamma måste få chansen att ropa till frukost.

Övn 1.23 Är följande pseudokod logiskt identisk med Kalle-algoritmen från övn 1.22?

 Start Kanske_Kalle?

 OM det är söndag

 sover Kalle vidare

 TILLS mamma ropar till frukost
 ANNARS

 går han upp

 OM mamma tittar på

 tvättar han sig

 Slut Kanske_Kalle?

Nej, denna pseudokod är logiskt inte identisk med Kalle-algoritmen från övn 1.22. Skillna-

den är att Kalle enligt denna pseudokod aldrig går upp på söndagar, därför att den logiska

innebörden av tvåvägsvalet OM-ANNARS skiljer sig från den enkla OM-satsen (utan ANNARS).

OM och ANNARS utesluter varandra, dvs när det verkligen är söndag, utelsluts det som står

under ANNARS. Först när man stryker ANNARS från denna pseudokod blir den logiskt identisk

med Kalle-algoritmen.

Övn 1.24 Rita flödesschemat till följande pseudokod:

 Sätt på radion

 Välj en kanal och lyssna

 SÅ LÄNGE du inte har hittat ett bra program

 byt kanal

 lyssna

 Fortsätt att lyssna på det valda programmet

 Stäng av radion

 226

 nej

 ja

Övn 1.25 Skriv ett C# program som läser in två heltal, multiplicerar dem med varan-

dra och skriver ut resultatet blandat med förklarande text. Om du t.ex. matar in 3 till det

första och 4 till det andra heltalet, ska programmet skriva ut: 3 gånger 4 är 12. Utveckla

programmet vidare med ytterligare räkneoperationer, kanske så småningom till en liten

kalkylator. tioner, kanske så småningom till en liten kalkylator, se 1.29 Kalkylatorn.

using System;

class Ovn_1_25

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext

 int no1 = int.Parse(Console.ReadLine()); // Inläsning

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = int.Parse(Console.ReadLine());

 Console.WriteLine("\n\n\t" +

 no1 + " plus " + no2 + " är " + (no1 + no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + (no1 - no2) + "\n\t" +

 no1 + " gånger " + no2 + " är " + (no1 * no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + (no1 / no2) + "\n\t" +

 no1 + " modulo " + no2 + " är " + (no1 % no2) + "\n\t");

 }
}

Välj en kanal och lyssna

Byt kanal
Program

bra?

Stäng av radion

Sätt på radion

Start

Fortsätt att lyssna på det valda programmet

Slut

Lyssna

 227

Övn 1.26 Rita ett flödesschema till följande pseudokod:

 Start Vinterklädsel_1

 Läs av temperaturen

 OM temperatur < 0

 ta sjal, mössa och handskar

 ANNARS OM temperatur < 5

 ta sjal och mössa

 ANNARS OM temperatur < 10

 ta sjal
 ANNARS

 slipper du vinterklädsel

 Slut Vinterklädsel_1

Använd dina programmeringskunskaper för att koda pseudokoden ovan och

flödesschemat du ritat, till ett C# program. Läs in ett värde för temperatur

och låt programmet avgöra val av klädsel genom att skriva ut "Ta sjal, mös-

sa, handskar... " eller liknande. För kontrollstrukturen flervägsval kan du

använda if-else-stegen som kodas i C# på samma sätt som i C++.

Ett flödesschema till pseudokoden Vinterklädsel_1 kan se ut så här:

 sant

 falskt

 sant

 falskt

 sant

 falskt

Ta sjal, mössa, handskar temp < 0

Ta sjal och mössa temp < 5

Du slipper vinterklädsel

Läs av temperaturen

Start

Ta sjal temp<10

Slut

 228

using System;

class Ovn_1_26

{
 static void Main()

 {
 Console.Write("\n\tMata in temperatur:\t");

 int temperatur = int.Parse(Console.ReadLine());

 if (temperatur < 0)

 Console.WriteLine("\n\tTa sjal, mössa och handskar!\n");

 else if (temperatur < 5)

 Console.WriteLine("\n\tTa sjal och mössa!\n");
 else if (temperatur < 10)

 Console.WriteLine("\n\tTa sjal!\n");

 else

 Console.WriteLine("\n\tDu slipper vinterklädsel.\n");

 }
}

**

Övn 1.27 Algoritmen i övn 1.26 ovan kan formuleras med följande pseudokod:

 Start Vinterklädsel_2

 Läs av temperaturen

 VÄLJ fall ur

 temperatur < 0: ta sjal, mössa och handskar

 temperatur < 5: ta sjal och mössa

 temperatur < 10: ta sjal

 Annars: slipper du vinterklädsel

 Slut Vinterklädsel_2

Rita flödesschemat till pseudokoden ovan och undersök den logiska likheten mellan flödes-

scheman i övn 1.26 och övn 1.27.

Flödesschemat till pseudokoden Vinterklädsel_2 är identisk med flödesschemat på förra sidan.

Dvs Vinterklädsel_1 och Vinterklädsel_2 har samma flödesschema, eftersom båda är logiskt

identiska och beskriver samma algoritm. Endast pseudokodens formulering är annorlunda.

**

Övn 1.28 Collatz algoritmen har modulariserats med void-metoden Collatz() som

är definierad i klassen Collatz_mod, se sid 42. Modularisera Collatz algoritmen med en me-

tod med returvärde istället. Dvs definiera en metod public static int Collatz()som

endast returnerar ETT tal i Collatz-sekvensen. Anropa metoden från en annan klass’ Main().

Tips: Placera loopen samt utskriftssatsen i huvudprogrammet som anropar meto-

den. För att dataflödet mellan loopen och metoden ska fungera tillämpa referens-

anrop.

// Collatz_return.cs

// Definierar metoden Collatz() med returvärde

// Metoden beräknar endast ETT tal i sekvensen

// Parametern n är av typ referens till int

using System;

 229

class Collatz_return

{

 public static int Collatz(ref int n)

 {

 if (n % 2 == 1)
 n = (3 * n + 1);

 else

 n = (n / 2);

 return n;

 }

}

// Collatz_return_Test.cs

// Läser in startvärdet till Collatz algoritmen

// Anropar metoden Collatz() definierad i klassen Collatz_return,

// i en loop. Referensanrop tillämpas på metoden

using System;

class Collatz_Test_return

{

 static void Main()

 {

 Console.Write("\n\tMata in ett positivt heltal:\t");

 int number = int.Parse(Console.ReadLine());

 Console.Write("\n\t" + number + "\t"); // Startvärdet

 while (number != 1) // Anropet i en loop

 Console.Write(Collatz_return.Collatz(ref number) + "\t");

 Console.WriteLine("\n");

 }

}

Kapitel 2 Logik för blivande programmerare, sid 83

Ovn_2_1

Skriv ett program som med hjälp av en nästlad for-sats skriver ut en

rektangel fylld med stjärnor (*) till konsolen, bestående av 9 rader

och 20 kolumner. Försök att numrera raderna och kolumnerna utan att

förstöra helhetsbilden.

using System;

class Ovn_2_1

{
 static void Main()

 {
 Console.WriteLine("\n\tx = \t12345678901234567890\n");

 for (int y=1; y<=9; y++) // Yttre slinga ordnar

 { // 9 rader med radbyte.
 Console.Write("\ty=" + y + '\t');

 for (int x=1; x<=20; x++) // Inre slinga ritar en

 Console.Write('*'); // rad av 20 stjärnor.

 Console.WriteLine(); // Radbyte i rektangeln

 }
 Console.WriteLine(); // Radbyte utanför

 }
}

 230

Ovn_2_2.cs

Selektera (skriv ut) från den stjärnfyllda rektangeln från övn 2.1

endast den 5:e raden och den 7:e kolumnen så att det visas ett kors.

Lägg in i den inre for-slingan som skriver ut en rad, en if-else-

sats som i varje varv skriver ut en stjärna om ett sammansatt

villkor med ELLER är uppfyllt, annars ett mellanslag.

Hur blir det om du byter ut ELLER mot OCH?

using System;

class Ovn_2_2

{
 static void Main()

 {
 Console.WriteLine("\n\tx = \t12345678901234567890\n");

 for (int y=1; y<=9; y++) // Yttre slinga ordnar

 { // 9 rader med radbyte.
 Console.Write("\ty=" + y + '\t');

 for (int x=1; x<=20; x++) // Inre slinga ritar en rad

 if (y==5 || x==7) // Sammansatt villkor:ELLER

// if (y==5 && x==7) // OCH ger skärningspunkten
 Console.Write('*');

 else

 Console.Write(' ');

 Console.WriteLine(); // Radbyte i rektangeln

 }

 Console.WriteLine(); // Radbyte utanför

 }
}

**

Ovn_2_3

Omvandla korset från övn 2.2 till dess negativ, dvs skriv ut alla

stjärnor från övn 2.1 utom den 5:e raden och den 7:e kolumnen.

Använd den logiska operatorn NEGATION. Negera en gång hela det sam-

mansatta ELLER-villkoret från övn 2.2 och en gång det sammansatta

villkorets delvillkor. I båda fall borde du få samma resultat.

using System;

class Ovn_2_3

{
 static void Main()

 {
 Console.WriteLine("\n\tx = \t12345678901234567890\n");

 for (int y=1; y<=9; y++)

 {
 Console.Write("\ty=" + y + '\t');

 for (int x=1; x<=20; x++)

 if (!(y==5 || x==7)) // NEG.av ammansatt villkor

// if (!(y==5) && !(x==7)) // NEGATION av delvillkoren
 Console.Write('*');

 else

 Console.Write(' ');

 231

 Console.WriteLine();

 }
 Console.WriteLine();

 }
}

**

Ovn_2_4

Skriv ett program som läser in tre tal, hittar och skriver ut det

största av dem. Lös problemet genom att använda tre enkla if-satser

med sammansatta villkor och den logiska operatorn &&. På så sätt kan

du i varje if-sats jämföra ett tal med de två andra. Varför måste va-

riabeln som lagrar det största talet, initieras vid deklarationen?

using System;

class Ovn_2_4

{
 static void Main()

 {
 int max = 0; // Initiering vid deklarationen

 Console.Write("\n\tMata in no1:\t");

 int no1 = int.Parse(Console.ReadLine());

 Console.Write("\n\tMata in no2:\t");

 int no2 = int.Parse(Console.ReadLine());

 Console.Write("\n\tMata in tal3:\t");

 int tal3 = int.Parse(Console.ReadLine());

 if ((no1 > no2) && (no1 > tal3))

 max = no1;

 if ((no2 > no1) && (no2 > tal3))

 max = no2;

 if ((tal3 > no1) && (tal3 > no2))

 max = tal3;

 Console.WriteLine("\n\tDet största talet är " + max + '\n');

 }
}

Variabeln max måste initieras vid deklarationen, för annars kan ko-

den inte kompileras pga villkorlig initiering av max i if-satserna.

**

Ovn_2_5

Skriv ett program som skriver ut sanningsvärdet till det enkla

villkoret a < 10 där a är en heltalsvariabel vars värde läses in.

Testa ditt program genom att mata in t.ex. 9, 10 resp. 11.

using System;

class Ovn_2_5

{
 static void Main()

 {
 Console.Write("\n\tAnge ett heltal:\t");

 int a = int.Parse(Console.ReadLine());

 Console.WriteLine("\n\t" + a + " < 10 är " + (a < 10) + '\n');

 }
}

 232

**

Ovn_2_6a

Bestäm sanningsvärden hos de följande logiska uttrycken,

först med papper och penna, sedan i ett C#-program:

 a) (8 < 7) && (true || false)

using System;

class Ovn_2_6a

{
 static void Main()

 {
 Console.WriteLine(

 "\n\tUttrycket (8 < 7) && (true || false) är " +

 ((8 < 7) && (true || false)) + '\n');

 }
}

**

Ovn_2_6b

Bestäm sanningsvärden hos de följande logiska uttrycken,

först med papper och penna, sedan i ett C#-program:

 b) !(3 < 3.01) || (!(0==0) && true)
using System;

class Ovn_2_6b

{
 static void Main()

 {
 Console.WriteLine(

 "\n\tUttrycket !(3 < 3.01) || (!(0==0) && true) är " +

 (!(3 < 3.01) || (!(0==0) && true)) + '\n');

 }
}

**

Ovn_2_6c.cs

Bestäm sanningsvärden hos de följande logiska uttrycken,

först med papper och penna, sedan i ett C#-program:

 c) (true || !false) && !(!(4*5==1) && false)
using System;

class Ovn_2_6c

{
 static void Main()

 {
 Console.WriteLine("\n\tUttrycket" +

 " (true || !false) && !(!(4*5==1) && false) är " +

 ((true || !false) && !(!(4*5==1) && false)) + '\n');

 }
}

**

Ovn_2_7

Följande enkel version av Gissa tal-spelet tillåter endast en spel-

omgång (utan loop). För att koda ett trevägsval nästlar programmet

en if-else-sats i en annan if-else-sats:

 233

// GuessIfElse.cs

// Flervägsval med nästlad if-else-sats

using System;

class GuessIfElse

{
 static void Main()

 {
 Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");

 int guessedNo = int.Parse(Console.ReadLine());

 if (guessedNo <= 17)

 if (guessedNo == 17)
 Console.WriteLine("\n\tGrattis, du har " +

 "gissat rätt!\n");

 else

 Console.WriteLine("\n\tFör litet!\n");

 else

 Console.WriteLine("\n\tFör stort!\n");

 }
}

Modifiera programmet ovan genom att använda logiska operatorer och

sammansatta villkor i syftet att förenkla nästlingen. Det nya pro-

grammet ska göra samma sak som GuessIfElse. Bedöm i slutet själv om

det har blivit mer förståelig kod.

using System;

class Ovn_2_7

{
 static void Main()

 {
 Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");

 int guessedNo = int.Parse(Console.ReadLine());

 if ((guessedNo < 17) || (guessedNo > 17))

 if (guessedNo < 17)

 Console.WriteLine("\n\tFör litet!\n");

 else

 Console.WriteLine("\n\tFör stort!\n");

 else

 {
 Console.Write('\u0007');

 Console.WriteLine("\n\tGrattis, du har gissat rätt!\n");

 }
 }
}

**

Ovn_2_8

Modifiera programmet PasswdCaps (sid 75) genom att lägga in kod

som begränsar antalet inloggningsförsök till t.ex. 3. Överskrider

man denna gräns ska programmet avslutas efter att ha skrivit ut ett

meddelande av typ "Du har försökt 3 gånger. Nu avslutas programmet!"

Tips: Använd en if-sats som avslutar programmet genom att bryta loo-

pen med break.

using System;

class Ovn_2_8

{

 234

 static void Main()

 {
 String input;

 bool wrongPasswd;

 int antalFörsök = 0;

 do

 {
 antalFörsök++;

 Console.Write("\n\tSkriv ditt lösenord:\t");

 input = Console.ReadLine();

 wrongPasswd = !(input == "hemligt") &&

 !(input == "HEMLIGT");

// wrongPasswd = !(input == "hemligt" || // Alternativt

// input == "HEMLIGT");
 if (wrongPasswd && (antalFörsök > 2))

 {
 Console.WriteLine("\n\tDu har försökt 3 gånger. " +

 "Nu avslutas programmet!\n");

 break;

 }
 if (wrongPasswd)

 Console.WriteLine("\n\tFel lösenord. Försök igen!\n");

 } while (wrongPasswd);

 if (!wrongPasswd)

 Console.WriteLine("\n\tDet är OK. Nu är du inloggad!\n");

 }
}

**

Ovn_2_9

Operationer med mängder kan illustreras grafiskt. Hur man gör det

kan du läsa i avsnitt 2.5 Mängdlära och logik på sid 78. Diagrammen

du ser där kallas för Venndiagram efter den brittiske logikern John

Venn. Med Venndiagram kan man illustrera även logiska lagar när de

är skrivna i mängdnotation, där en mängd motsvarar en utsaga.

De Morgans lagar togs upp i kap2 (sid 77) & kan då formuleras så här:

¬ (p OCH q) ↔ ¬ p ELLER ¬ q

¬ (p ELLER q) ↔ ¬ p OCH ¬ q

där p och q är utsagor, ¬ är symbolen för logisk negation och ↔ sym-

bolen för logisk ekvivalens. Sä här kan man skriva om dem till sam-

band mellan mängder:

Anta att A och B är mängder och är symbolen för komplementmängden, ∩

för snittet och U för unionen av två mängder (se definitionerna i av-

snitt 2.5 Mängdlära och logik på sid 78. Då kan De Morgans lagar

skrivas i mängdnotation så här:

 (A ∩ B) = (A) U (B)

 (A U B) = (A) ∩ (B)

Illustrera De Morgans lagar i mängdnotation med Venndiagram.

 235

Lösningen:

**

Kapitel 3 Datastrukturer och abstrakta datatyper, sid 132

Ovn_3_1_Class

Modifiera klassen Fish (sid 106) så här: Deklarera datamedlemmarna

som private och metoderna som public. Förse klassen med ytterligare

två publika metoder, så att den nya klassen Fish_priv har följande

utseende. Modifiera programmet ArrayOfRef (sid 107) så att det modi-

fierade programmet gör samma sak som det ursprungliga.

using System;

class Fish_priv

 236

{
 private string sort;

 private float weight, size;

 public Fish_priv(string S, float w, float s)

 {
 sort = S;

 weight = w;

 size = s;

 }

 public int Price()

 {
 return (int) Math.Round(weight * 7.25f / 100);

 }

 public int Shipping()

 {
 return (int) Math.Round(weight * 0.02f + size * 0.1f);

 }

 public string AsString()

 {
 return sort + "\t " +

 weight + "\t\t " + size + "\t\t " +

 Price() + "\t " + Shipping() + "\n" ;

 }
}

Ovn_3_1_Test

Modifiera programmet ArrayOfRef (sid 107) så att det modifierade

programmet gör samma sak som det ursprungliga.

using System;

class ArrayOfRef_ny

{
 static void Main()

 {
 string fiskSort;

 float fiskVikt, fiskLängd;

 Fish_priv[] f = new Fish_priv[5]; // Array av referenser

 for (int i = 0; i < f.Length; i++)

 {
 Console.Write("\n\tMata in sorten till fisk" + (i+1) +

 ":\t");

 fiskSort = Console.ReadLine(); // Input

 if (fiskSort.Length <= 7) fiskSort += '\t';

 Console.Write("\tMata in vikten till fisk" + (i+1) +

 ":\t");

 fiskVikt = (float) Convert.ToDecimal(Console.ReadLine());

 Console.Write("\tMata in längden till fisk" + (i+1) + ":\t");

 fiskLängd = (float) Convert.ToDecimal(Console.ReadLine());

 f[i] = new Fish_priv(fiskSort, fiskVikt, fiskLängd);

 }
 Console.Write("\nFisksort\tVikt i g\tLängd i cm\tPris\tFrakt\n" +

 "---\n");

 for (int i = 0; i < f.Length; i++)

 237

 Console.WriteLine(f[i].AsString());

 }
}

**

Ovn_3_2

Skriv ett program som läser in 10 heltal från konsolen, lagrar dem i

en array och skriver ut dem i omvänd ordning.

using System;

class Ovn_2_2

{
 static void Main()

 {
 int[] no = new int[10];

 Console.WriteLine("\n\tSkriv in 10 heltal:\n");

 for (int i = 0; i <= 9; i++)

 {
 Console.Write("\tTal nr " + (i+1) + ":\t");

 no[i] = int.Parse(Console.ReadLine());

 }

 Console.WriteLine("\nDina tal i omvänd ordning:\n");

 for (int i = 9; i >= 0; i--)

 Console.Write(no[i] + "\t");

 Console.WriteLine();

 }
}

**

Ovn_3_3.cs

Skriv ett program som läser in text i gemener, lagrar den i en array

av char och skriver ut den framhävd i versaler och med mellanslag

mellan varje tecken.

using System;

class Ovn_3_3

{
 static void Main()

 {
 Console.Write("\n\tSkriv in text:\t\t");

 char[] text = Console.ReadLine().ToCharArray();

 Console.Write("\n\tTexten framhävd:\t");

 for (int i = 0; i < text.Length; i++)

 Console.Write("" + (char) (text[i] - 32) + ' ');

 Console.WriteLine('\n');

 }
}

**

Ovn_3_4

Skriv ett program som frågar efter användarens för- & efternamn, hälsar

 238

sedan användaren i en utskrift med fullständiga namnet, förnamnets

längd samt efternamnets första & sista bokstav. Lös uppgiften generellt

utan att använda information om något speciellt för- och efternamn.

using System;

class Ovn_3_4

{
 static void Main()

 {
 char surname0 = '0'; // Undviker villkorlig initiering

 Console.Write("\n\tSkriv in ditt för- och efternamn:\t");

 string input = Console.ReadLine();

 char[] name = input.ToCharArray();

 int i = 0;

 while (name[i] != ' ') // Går igenom endast förnamnet

 {
 i++;

 if (name[i] == ' ') // Hittar för- och efternamnets avskiljare
 surname0 = name[i+1]; // Hittar efternamnets första bokstav

 }
 Console.WriteLine("\n\tHej, " + input +

 "\n\tDitt förnamns längd är " + i +

 "\n\tDitt efternamns första bokstav är " + surname0 +

 "\n\tDitt efternamns sista bokstav är " +

 name[name.Length-1] + '\n');

 }
}

**

Ovn_3_5

Skriv ett program där Main() läser in en persons fullständiga namn

och hälsar tillbaka med namnets initialer. Dessa ska bestämmas och

skrivas ut i en annan metod - med huvudet: static void Initials-

(char[] name) - som anropas i Main().

using System;

class Ovn_3_5

{
 static void Main()

 {
 Console.Write("\n\tSkriv in ditt för- och efternamn:\t");

 string input = Console.ReadLine();

 char[] dittNamn = input.ToCharArray();

 Console.Write("\n\tHej, " + input +

 "\n\n\tDina initialer är\t\t\t");

 Initials(dittNamn); // Anropet

 Console.WriteLine('\n');

 }

 static void Initials(char[] name) // Metoden

 {
 int i = 0;

 Console.Write(name[i]); // Första initialen

 while (name[i] != ' ') // Går igenom endast förnamnet

 {
 i++;

 if (name[i] == ' ') // Hittar för- och efternamnets
 // avskiljare

 239

 Console.Write(name[i+1]); // Andra initialen

 }
 }
}

**

Ovn_3_6

Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140

(tänkbara hastigheter på en motorväg), lagrar dem i en array kallad

hastighet, beräknar och skriver ut deras medelvärde med förklarande

text. Använd klassen RandArray (sid 115) som extern modul.

För att detta program ska fungera måste klassen RandArray på sid 115

inkluderas i samma Visual Studio projekt.

using System;

class Ovn_3_6

{
 static void Main()

 {
 Random r = new Random();

 int[] hastighet = new int[1000];

 RandArray.Rand(r, hastighet, 60, 140);

 int sum = 0;

 for (int i = 0; i <= 999; i++)

 sum += hastighet[i];

 Console.WriteLine("\tMedelvärdet av 1000 möjliga hastigheter " +

 "mellan 60 och 140 är: " + sum/1000 + '\n');

 }
}

**

Ovn_3_7

Modifiera programmet Lista (sid 128) så att sorteringen av slumpta-

len görs med vår egen bubbelsorteringsmetod sort() (sid 121) istäl-

let för med den fördefinierade List-metoden Sort(). Testa först med

array-notationen som sort() är skriven i. Försök sedan att skriva om

sort() till en List-version.

using System;

using System.Collections.Generic; // Krävs för List

class Lista

{
 static void Main()

 {
 List<int> intList = new List<int>(); // List-objekt av int

 Random r = new Random();

 int a = 1, b = 1000;

 Console.WriteLine(

 "\n\t100 heltal mellan " + a + " och " + b +

 " slumpas till ett List-objekt:\n");

 RandList.Rand(r, intList, a, b); // Slump-tilldelning

 Print.Out(intList); // Osorterad utskrift

 Bubble.sort(intList); // List-sortering

 Console.WriteLine(

 "\tHeltalen sorteras med List-metoden Sort():\n");

 Print.Out(intList); // Sorterad utskrift

 }
}

 240

--

BubbleList.cs (List-versionen av Bubble.cs sid 121)

Separat fil i samma projekt som filen Ovn_5_7.cs

Sorterar heltal lagrade i arrayen t med en bubbelsorteringsalgoritm

using System;

using System.Collections.Generic;

class Bubble

{
 public static void sort(List<int> t)

 {
 int temp;

 for (int pass=0; pass<t.Count-1; pass++)

 for (int i=0; i<t.Count-1; i++)

 if (t[i] > t[i+1]) // Sortering i stigande

 { // ordning
 temp = t[i]; // Algoritm för platsbyte

 t[i] = t[i+1]; // av de två elementen

 t[i+1] = temp; // t[i] och t[i+1]

 }
 }
}
--

Print.cs (sid 130)

Separat fil i samma projekt som filen Ovn_3_8.cs

Metoden Out() skriver ut en lista med en foreach-sats som

loopar igenom listans ALLA element

using System;

using System.Collections.Generic;

class Print

{
 public static void Out(List<int> t)

 {
 Console.Write("\t");

 int i = 0;

 foreach (int element in t) // Loop

 {
 Console.Write(element + " ");

 if ((i % 14 == 0) && (i != 0)) // Radbyte var
 Console.Write("\n\t"); // 14:e utskrift

 i++;

 }
 Console.WriteLine("\n");

 }
}

--

RandList.cs (sid 129)

Separat fil i samma projekt som filen Ovn_3_8.cs

Metod Next() slumpar fram heltal mellan a och b och

lagrar dem i ett List-objekt med List-metoden Add()

using System;

using System.Collections.Generic;

class RandList

{

 241

 public static void Rand(Random r, List<int> no, int a, int b)

 {
 for (int i=0; i < 100; i++) // Här fylls listan

 no.Add(r.Next(a, b)); // med slumptal

 }
}

**

Kapitel 4 Tillämpningar, sid 155:

Ovn_4_1

Skriv ett program som läser in en sträng, lagrar den i en array av

char och skriver ut den baklänges. Använd tekniken i programmet En-

cryptCharTest (sid 138) för att omvandla den inlästa strängen i en

array av char.

using System;

class Ovn_4_1

{
 static void Main()

 {
 Console.Write("\n\tSkriv in text:\t\t");

 char[] text = Console.ReadLine().ToCharArray();

 Console.Write("\n\tTexten baklänges:\t");

 for (int i = text.Length-1; i >= 0; i--)

 Console.Write(text[i]);

 Console.WriteLine('\n');

 }
}

**

Ovn_4_2

Skriv ett program som skapar en tom fil, skriver i den texten ”Den

här texten kommer från mitt första C# filhanteringsprogram” och sedan

läser från den samt skriver ut innehållet på skärmen. Som mall kan du

ta programmet WriteReadFile (sid 141) och modifiera den.

using System;

using System.IO;

class Ovn_4_2

{
 static void Main()

 {
 string word;

 StreamWriter fileForWrite = new StreamWriter("Ovn_4_2.txt");

 fileForWrite.WriteLine(// Skriver texten till filen

 "\tDen här texten kommer från mitt " +

 "första C# filhanteringsprogram.") ;

 fileForWrite.Close();

 StreamReader fileForRead = new StreamReader("Ovn_4_2.txt");

 Console.WriteLine("\n\tFöljande text har skrivits från " +

 "programmet till filen.\n\n\t" +

 "Nu läses den från filen:\n") ;

 while (!fileForRead.EndOfStream)

 242

 {
 word = fileForRead.ReadLine(); // Läser texten från filen

 Console.WriteLine(word); // Visar texten på skärmen

 }
 fileForRead.Close();

 Console.WriteLine();

 }
}

Ovn_4_3

Modifiera programmet från övn 4.2 ovan: Istället för att hårdkoda

texten i programmet, läs in den så att programmet skriver vilken in-

läst text som helst till filen och läser den sedan därifrån.

using System;

using System.IO;

class Ovn_4_3

{
 static void Main()

 {
 string word, text;

 Console.Write("\n\tSkriv en text som ska lagras i en fil:\t");

 text = Console.ReadLine(); // Läser texten från skärmen

 StreamWriter fileForWrite = new StreamWriter("Ovn_4_3.txt");

 fileForWrite.WriteLine(text); // Skriver texten till filen

 fileForWrite.Close();

 StreamReader fileForRead = new StreamReader("Ovn_4_3.txt");

 Console.WriteLine("\n\tFöljande text har lästs från skärmen" +

 " och skrivits till filen.\n\n\t" +

 "Nu läses den från filen och visas här:\n");

 while (!fileForRead.EndOfStream)

 {
 word = fileForRead.ReadLine(); // Läser texten från filen

 Console.WriteLine("\t\t" + word); // Visar texten på skärmen

 }
 fileForRead.Close();

 Console.WriteLine();

 }
}

Ovn_4_4

Varje gång man kör programmen Ovn_4_2 eller Ovn_4_3 efter första

gången, rensas och återställs filen och endast den senaste texten

hamnar i den. Skriv ett program som gör samma sak som Ovn_4_3 men

bibehåller filens gamla innehåll och lägger till den nyinlästa tex-

ten utan att radera gammal data. Du kan åstadkomma det genom att

öppna filen i append mode.

using System;

using System.IO;

class Ovn_4_4

{
 static void Main()

 {

 243

 string word, text;

 Console.Write("\n\tSkriv en text som ska lagras i en fil:\t");

 text = Console.ReadLine(); // Läser texten från skärmen

 StreamWriter appendFil = new StreamWriter("Ovn_4_4.txt",

 append:true);

 // Filen öppnas för append

 appendFil.WriteLine(text); // Inläst text läggs till

 appendFil.Close(); // filen

 StreamReader fileForRead = new StreamReader("Ovn_4_4.txt");

 Console.WriteLine("\n\tFöljande text har lästs från skärmen" +

 " och lagts till filen.\n\n\t" +

 "Nu läses den från filen och visas här:\n");

 while (!fileForRead.EndOfStream)

 {

 word = fileForRead.ReadLine(); // Läser texten från filen

 Console.WriteLine("\t\t" + word); // Visar texten på skärmen

 }

 fileForRead.Close();

 Console.WriteLine();

 }
}

Ovn_4_5_Class

Modifiera klassen RandPasswd (sid 148) som genererar ett slumplösen-

ord, genom att använda en annan, ny lösenordpolicy: 3 gemener, 2 ver-

saler samt ? och @) och 2 specialtecken.

using System;

class RandPasswd_Ny

{
 public static void OnePassword(Random r, char[] p)

 {
 for (int i=0; i < 3; i++)

 p[i] = (char) r.Next(97, (122 + 1));// 3 små bokstäver

 for (int i=3; i < 5; i++)

 p[i] = (char) r.Next(63, (90 + 1)); // 2 versaler samt ? och @

 for (int i=5; i < 7; i++)

 p[i] = (char) r.Next(33, (47 + 1)); // 2 specialtecken

 }
}

--

Ovn_4_5_Test

Testa den nya policyn i programmet RandPasswdTest för att skriva ut

de nya slumplösenorden samt tillhörande användarnamn till en fil

using System;

using System.IO;

class RandPasswdTest

{
 static void Main()

 {
 char[] password = new char[8];

 Random r = new Random();

 244

 string word;

 Console.Write("\n\tHur många användarnamn med lösenord " +

 "vill du ha? ");

 int antal = Convert.ToInt32(Console.ReadLine());

 StreamWriter fileForWrite = new StreamWriter("userPasswd.txt");

 for (int i=1; i<=antal; i++)

 {
 RandPasswd_Ny.OnePassword(r, password); // Slumplösenord

 fileForWrite.WriteLine("\tuser" + i + // Skrivs till fil

 "\t\t" + new String(password));

 }
 fileForWrite.Close();

 StreamReader fileForRead = new

 StreamReader("userPasswd.txt");

 Console.WriteLine("\n\tVarsågod, detta står nu" +

 " i filen userPasswd.txt:\n");

 while (!fileForRead.EndOfStream)

 {
 word = fileForRead.ReadLine(); // Läses från fil

 Console.WriteLine(word); // Skrivs till skärm

 }
 fileForRead.Close();

 Console.WriteLine();

 }
}

**

 245

Programförteckning

Program Ämne Sida

Kapitel 1 Algoritmer och programmering

Morgonsyssla Algoritm: Ex. på pseudokod / flödesschema 20/23

PrimitivesCs Enkla datatyper i C# 31

InputCs Inläsning av data 34

(Un)CondInit Villkorlig initiering 37

Collatz Algoritm & program med selektion och repetition (loop) 39

Collatz_mod Metoder och program i C# 42

Collatz_Test Modularisering av programmet Collatz 42

MiniSort Algoritm för platsbyte av två objekt 44

NoSort Misslyckad modularisering av programmet MiniSort 45

CallByVal Värdeanrop 48

CallByRef Referensanrop 52

Swapping Modularisering av programmet MiniSort 51

OutParam In- och utparametrar 53

Kapitel 2 Logik för blivande programmerare

AND_OR De logiska operatorerna OCH och ELLER 63

TruthTab Logiska variabler med datatypen bool, sanningstabeller 67

GuessNEG Gissa tal med NEGATION som logisk operator 69

 Logiska uttryck, dubbel negation

Passwd Programserien Testa lösenord med NEGATION 73

 String-metoden equals()

PasswdCaps Test av två lösenord med De Morgans lag 75

Kapitel 3 Datastrukturer och abstrakta datatyper

ArrayObj Ny datastruktur av sammansatt typ 99

ArrayRef 104

Fish Deklarerar klassen Fish 106
ArrayOfRef Array av referenser till Fish-objekt 107

ArrayParam Array som parameter i en metod 110

DoRand Hantering av slumptal i C# 114

RandArray Metod som slumpar fram en array av heltal 117

Search Metod som söker efter ett element i en array 119

Bubble Läser en tabell från en fil och visar innehållet 121

G_Bubble Generiska metoder 121

 246

Program Ämne Sida

Lista Demonstrerar dynamiska arrays: Listor 128

RandList Klassen RandList 129

Print foreach i listor 130

Kapitel 4 Tillämpningar

EncryptStr Kryptering av strängar 139

EncryptChar Kryptering av text, tekenvis 139

RandPasswTest Skriver till en fil ett antal användarnamn samt slumpvis 146

 genererade lösenord, läser från den och visar innehållet

RandPasswd Metod som skapar slumpvis genererade lösenord 148

EncryptFile Kryptering av filer med en slumpkrypteringsnyckel 151

EncryptText Krypterar text (annan variant) 152

ReadShowFile Läser en fils innehåll och visar det på skärmen 154

WriteFile Skriver text till en fil 153

Kapitel 5 Datastrukturer i relationsdatabaser

FirstDatabase Laddar en databas till C# och etablerar kontakt med den 179

 Visar databasens tabeller i en grafisk miljö

SQLclient Skickar SQL-frågor från C# till databasen 185

 Visar frågornas resultat i en grafisk miljö

Kursverksamhet Skapar en tom databas i C#, etablerar kontakt med den

 och fyller den med tabeller 197

 Specificerar tabellernas kolumner samt deras datatyper

 Definierar tabellernas primär- och främmande nycklar

 Bestämmer relationer mellan databasens tabeller

 Fyller tabellerna med data.

 247

Register

A

Abstraktion 88
ADO.NET-objektmodellen 170
Algol 7
Algoritm 15

Exempel 16
Argument 46
Array 97

Default-initiering 101
Definition 99
Hakparenteser 101
Indexering 98
Indexregeln 98
Initiering 99
Parameter i metoder 110
Referensanrop 110

Array av referenser 106
Arv 91
Assembler 7
Attribut 88, 198

B

Basic 8
bool 67

Bubbelsortering 120

C

Cobol 7
ComboBox 192
Convert.ToInt32() 36

CREATE TABLE-satsen 177

D

Data Definition Language 177
Data Sources 180
Databas 158

Modularisering 160
Databasmodellering 197
Databasobjekt 204
DataGridView-kontroll 179
Datamedlem 90

DateTime-klassen 66

De Morgans lagar 76
Deklarativt språk 169

E

Element 97
Entitet 198
Entity-Relationship Modeling 198
Equals() 74

F

Filhantering 141
Append 144
Append mode 144

Flödesplan 22
Exempel 23

Fortran 7
FORTRAN 7
Främmande nyckel 167
Fält 161

H

Händelsestyrd programmering 12
Högnivåspråk 7

I

Identity 177, 200
Implementation 93
Indata 34
Index 97
Indexregeln 98
Inmatning 34
Instruktion

Huvudinstruktion 20
Underinstruktion 20

J

Java 10
Join 172

 248

K

Klient-Server-modellen 169
Kontrollstruktur 22
Kryptering 138

Fil 150
Filer 150
Text 138

Kryptering av filer 150
Kursverksamhet 197

L

Label 12
LIKE 176
Lista 128
Logisk operator 62

ELLER 65
NEGATION 69
OCH 64
Programexempel 64

Logiska lagar 64
Lågnivåspråk 7

M

Maskinkod 18
Metod 41, 90

Begreppet 41
Modularisering 92
Mönstermatchning 176

N

NEGATION 69
Dubbel 71

NULL i SQL 161

O

Objekt 88
Objektorienterad design 14, 87
Objektorienterad programmering 14,

87
Operator

Logisk 69
ORDER BY 175

P

Paradigmskifte 14, 87
Parameter 41
Pascal 8
Polymorfism 91
Post 161
Primärnyckel 167
Programmering 13

Historik 6
Projektion 172
Pseudokod 20
Punktnotation 89

R

Radsortering 175
Referensanrop 48
Relation 163
Relationsdatabasmodellen 159
Returvärde 41

S

Sanningstabell 64
Script 178
SELECT-satsen 172
Selektion 172, 173
slumpArray-klassen 115

Slumplösenord 146
Slumptal 114

Array 115
Sortering 120

Platsbyte 39, 44
SQL 171

Regler och konventioner 178
SQL i C# 185, 210
SQL-klient 185
Structured Query Language 171
Strukturering av kod 92
Sökning 118

T

Tabell 160
Liknelse med klass 162

 249

U

UML 14, 19, 87, 90
Uttryck

Logiskt 71

V,W

View Designer 182
Villkor 21

Villkorlig initiering 36
WHERE-satsdelen i SQL 174

Å

Återanvändning av kod 92

