Algoritmer, data-

strukturer & design patterns

Med C#, relationsdatabaser och SQL

Med 6vningar,
fullsténdiga I6sningar
&
projektuppgifter

TechPages Forlag AB

Innehall

Amne Sida Program/Algoritm
Kapitel 1 Algoritmer och programmering 5
1.1 Programmeringens historia 6
- Frén maskinkod till Assembler 6
1.2 Olika paradigm inom programmering 11
- Paradigmskifte 14
1.3 Algoritmer och deras beskrivning 15
- Historiens forsta algoritm 15
- Definition och exempel pd algoritmer 16
- Olika satt att beskriva algoritmer 18
1.4 Traditionell design pattern med flédesschema 20
- Pseudokod till algoritmen Morgonsyssla 20 Morgonsyssla
- Kontrollstrukturer i algoritmer 22
- Flédesschema till algoritmen Morgonsyssla 23
1.5 Tillagg av C# i Visual Studio 25
1.6 C# Console Applications 26
1.7 De enkla datatyperna i C# 31 PrimitivesCs
1.8 Inlasning av data 34 InputCs
- Metoden ReadLine() 35
- Villkorlig initiering 36 (Un)CondInit
1.9 Collatz algoritmen 39 Collatz
- Metoder och program i C# 41 Collatz_mod
- Modularisering av Collatz 42 Collatz_Test
1.10 Algoritm for platsbyte 44 MiniSort
- Forsok att modularisera MiniSort 45 NoSort
1.11 Parameterdverféring i metoder 48
- Vardeanrop (Call by value) 48 CallByVal
- Referensanrop (Call by reference) 50 CallByRef
- Modularisering av MiniSort 42 Swapping
1.12 In- och utparametrar 53 OutParam
Ovningar till kapitel 1 56
Kapitel 2 Logik for blivande programmerare 61
2.1 Logiska operatorer 62 AND OR
- Sanningstabeller 64
2.2 Datatypen bool 67 TruthTab
2.3 NEGATION som logisk operator 69 GuessNEG
- Logiska uttryck 71
2.4 Programserien 7esta losenord 73 Passwd
- Kombination av NEGATION, OCH, ELLER 75 PasswdCaps
- De Morgans lagar 77

Amne Sida Program/Lank

2.5 Mangdlara och logik 78 Mangder
- Mangdoperationer och deras logik 78
- Cartesisk produkt 82
Ovningar till kapitel 2 83

Kapitel 3 Datastrukturer och abstrakta datatyper 86

3.1 Vad &r objektorienterad programmering? 87
3.2 Objektorienterad design med UML 93
- Projekt Lonespecifikation 93
- Kundens kravspecifikation 93
- UML design och modellering i fyra steg 93
3.3 Array som objekt 97 ArrayObj
- foreach-satsen 101
3.4 Hantering av array med referens 104 ArrayRef
3.5 Array av referenser 106 ArrayOfRef
3.6 Array som parameter i metoder 110 ArrayParam
3.7 Hantering av slumptal i C# 114 DoRand
- Array av slumptal 115 RandArray
3.8 Sokning och sortering 117 Search
- Bubbelsortering 120 Bubble
3.9 Generiska metoder 123 G_Bubble
3.10 Listor 128 Lista
- Klassen RandList 129 RandList
- foreach i listor 130 Print
Ovningar till kapitel 3 132
Kapitel 4 Tillampningar 134
4.1 Kryptering av strangar 135 EncryptStr
4.2 Kryptering av text, teckenvis 138 EncryptChar
4.3 Filhantering 141 WriteReadFile
- Append 144 AppendFile
4.4 Slumpldsenord 146 RandPasswdTest
4.5 Kryptering av filer 150 EncryptFile
Ovningar till kapitel 4 155
Kapitel 5 Datastrukturer i relationsdatabaser 157 Databaser
5.1 Introduktion till databaser 158
5.2 Relationsdatabaser 160
- Modularisering 160
- Liknelse med klass och objekt 162
- Vad ar en relation i databaser? 163
- Primar- och frammande nycklar 167

http://www.taifun.se/images/stories/Mangder.pdf
http://www.taifun.se/images/stories/Databaser.pdf

Amne Sida Program/L&nk
5.3 Introduktion till SQL 168
- Databashanterare 168
- Klient — Server-modellen 169
- SQL - databasers sprak 171
- SELECT-satsen 172
- CREATE TABLE-satsen 177
5.4 Var forsta SQL Server databas 179 FirstDatabase
- Att koppla upp sig till SQL Servern 180
- Att visa databasens innehdll 183
5.5 En SQL klient i C# 185 SQLclient
- Att skriva och exekvera egna SQL satser 187
- Grafiskt granssnitt till SQL klienten 192
5.6 Att skapa och designa en databas i C# 197 Kursverksamhet
- Databasmodellering 198
- Att skapa databasen Kursverksamhet 198
- Att skapa tabeller i databasen 199
- Att koppla projektets Dataset till databasen 202
- Att skapa relationer mellan tabeller 205
- Att lagga in data i tabellerna 207
5.7 Att férse databasen med funktionaliteter 210 AddressBook
Ovningar till kapitel 5 216
Fullsténdiga lésningar till alla 6vningar (Facit) 222
Projektuppgifter
¢ Kalkylatorn 59
e Kryptering av databas 156
e Human resources 218
o Kaffeautomaten 219
Programférteckning 245
Register 247

Kapitel 1

Algoritmer och programmering

Amne Sida Program/Algoritm

1.1 Programmeringens historia 6

- Frén maskinkod till Assembler 6
1.2 Olika paradigm inom programmering 11

- Paradigmskifte 14
1.3 Algoritmer och deras beskrivning 15

- Historiens forsta algoritm 15

- Exempel pd algoritmer 16

- Definition av algoritm 17

- Olika satt att beskriva en algoritm 18
1.4 Design pattern med flédesschema 20

- Pseudokod till algoritmen Morgonsyssla 20 Morgonsyssla

- Kontrollstrukturer i algoritmer 22

- Flodesschema till algoritmen Morgonsyssla 23
1.5 Tillagg av C# i Visual Studio 25
1.6 De enkla datatyperna i C# 31 PrimitivesCs
1.7 Inlasning av data 34 InputCs

- Metoden ReadLine() 35

- Villkorlig initiering 36 (Un)CondInit
1.8 Collatz algoritmen 39 Collatz

- Metoder och program i C# 41 Collatz_mod

- Modularisering av Collatz 42 Collatz_Test
1.9 Algoritm for platsbyte 44 MiniSort

- Forsok att modularisera MiniSort 45 NoSort
1.10 Parameterdverféring i metoder 48

- Vérdeanrop (Call by value) 48 CallByVal

- Referensanrop (Call by reference) 50 CallByRef

- Modularisering av MiniSort 42 Swapping
1.11 In- och utparametrar 53 OutParam
Ovningar till kapitel 1 56

1.1 Programmeringens historia

Programmeringens historia skulle kunna fylla en hel bok. Vi maste néja oss med ett
urval. Darfor tar vi endast upp de mest kanda programspraken. Denna framstallning
gor alltsd inte alls nagot ansprak pa fullstandighet. Samtidigt ska den forklara varfor
det finns flera hundra olika programsprak. Det ar funktionaliteten som ar avgorande.

Fran vavstolarna till John von Neumann

Redan pa 1800-talet programmerade man vavstolarna med jéttelika slags trahalkort —
en form av manuell programmering. Speldosor av olika slag vars melodier &r forpro-
grammerade och stansade i cylinderformiga metalltrummor som rullar 6ver en spik
(1800-talets iPhones!), &r ett annat exempel pa manuell programmering. Aven nar de
forsta datorerna konstruerades pa 1930/40-talet, skedde all programmering manuellt.
Man matade de stora maskinerna med béde information (data) och instruktion (pro-
gram) for att dstadkomma en liten berikning. Dessa jatteapparater med en brakdel av
datorkraften hos en modern PC — en av dem: 35 ton och 16 meter lang — kunde lagra
endast data. Men att &ven kunna lagra instruktioner, var inte 16st &n.

Den tekniska innovation som inledde programmeringens historia i modern bemarkel-
se var John von Neumanns datormodell: 1944 lyckades han konstruera en dator som
kunde lagra bade data och instruktioner. De matades in via halkort och kunde sedan
bearbetas och t.0.m. dndras i datorn. John von Neumann-modellen sdg ut sa hér:

Dator

———= Utdata
Indata —@
A

Program

John von Neumanns modell var ett genombrott i programmeringens historia. An
idag fungerar i princip exekvering av kod i datorns processor enligt denna modell:
Kor man ett program laddas koden fran harddisken, dar det lagrats i en fil, till
datorns primarminne. Indata matas in fran tangentbordet eller hamtas fran en annan
fil. 1 datorns processor bearbetas indata enligt programmets instruktioner, utdata
produceras och matas ut om det 6nskas. Enda skillnaden fran idag: d& bestod in-
struktionerna av langa talkedjor som omvandlades till ettor och nollor, dvs man
programmerade i maskinkod, ett sprak som datorns processor forstod. Idag anvén-
der vi kallkod i ndgot programmeringssprak.

Frdn maskinkod till Assembler

S& smaningom kom man pé idén att anvanda sig av kortkommandon pa engelska
som motsvarade instruktionerna i talform. Ett program tolkade sedan kommandona

6

till maskinkod. Programmet kallades assembler eller assemblator. Kortkommandona
var de forsta nyckelorden av programmeringsspraket Assembler.

50-talet

Assembler betecknas som lagnivasprak eftersom det ar nara datorns
sprak utan att vara maskinkod. Fordelen med Assembler ar att det ar
snabbt. An idag finns det ingen kod skriven av manniskan som kan koras
pa datorn snabbare. Nackdelen med Assembler &r att det inte finns ett
sprak som heter sa, utan varje processor har sitt eget assemblersprak. Dvs
program skrivet for en datortyp kan inte koras pa en annan. P& 40-talet
var datorerna tekniska underverk, byggda for hand. Varje dator hade sin
egen programmerare, oftast tillverkaren sjalv som var specialiserad pa
just sin maskins assemblersprak. | langden var detta ohéllbart. Losningen
var att komma bort fran maskinberoende sprak.

De forsta hognivaspraken

1957

1959

1960

FORTRAN = FORmula TRANSslator ar historiens forsta hognivasprak i
den bemarkelsen att det ligger nara manniskans sprak. Avstandet till ma-
skinkod ar storre an hos Assembler. Darfor maste en kallkod i Fortran
forst dversattas till maskinkod. Denna dversattning kallas kompilering
och &r mer invecklad &n assemblering. Den nya maskinkod som direkt
kan koras, & mycket storre an kéllkoden och lagras separat pa harddis-
ken. Fortran é&r till skillnad fran Assembler ett kompilerande sprak. Des-
sutom &r det som namnet antyder, i forsta hand inriktat pa berékning av
matematiska formler. An idag anvands fortranprogram av ingenjérer och
vetenskapsmén som behdver snabba berdkningar. Men det finns dven ad-
ministrativa tillimpningar av Fortran. Spraket har utvecklats och mark-
nadsforts av foretaget 1IBM.

COBOL = COmmon Business Oriented Language &r, som namnet séger,
specialiserat pa administrativa och ekonomiska tillampningar. Det kraver
hantering av stora datamangder vilket Cobol ar bra pd. Manga stora ban-
ker och forséakringsbolag har kvar sina program som en gang var skrivna i
Cobol. Aven om det numera finns modernare sprék, haller man ofta fast
vid det gamla pga de stora kostnader som ett byte skulle innebéra. Aven
Cobol &r ett hognivasprak och darmed kompilerande. Cobol &r utvecklat
av USA:s forsvarsdepartement i samarbete med den amerikanska datorin-
dustrin.

ALGOL = ALGOrithmic Language ar det forsta sprak som utvecklades i
Europa. Det hade akademisk bakgrund: Initiativet I&g hos det tyska Ge-
sellschaft flir Angewandte Mathematik und Mechanik (GAMM). Man var
ute efter ett verktyg for att utnyttja datorkraften for teknisk-vetenskapliga
berdkningar pa ett mer strukturerat satt &n Fortran. Berakningarna skulle
baseras pa numeriska algoritmer snarare an matematiska formler. Algol
som var ett kompilerande hégnivasprak, berikade programmeringen med
manga nya idéer och introducerade bl.a. kontrollstrukturer som anvands i

7

1963

1971

algoritmer. Dessa har tagits éver och vidareutvecklats i de moderna pro-
gramspraken. Algol sjalv anvéands inte sa& mycket idag, inte minst pga
brist pa marknadsforing.

BASIC = Beginners All-purpose Symbolic Instruction Code &r ett av de
fa hognivasprak som inte ar kompilerande utan interpreterande. Dvs kall-
koden tolkas rad for rad av datorns processor, utférs direkt och gloms
bort sedan. Det uppstar ingen ny kod som lagras pa harddisken. Interpre-
tering av kallkod &r alltid ldngsammare &n exekveringen av redan kompi-
lerad maskinkod. Daremot &r interpretering snabbare &n kompilering av
kallkod. I Basic finns inget kompileringssteg. Basic &r, som namnet be-
rattar, inriktat pa att lara ut programmering for nyborjare. Darfor har man
hallit spraket s& enkelt som majligt, sd enkelt att man struntat i kontroll-
strukturer som redan fanns i Algol och darmed lagt grunden fér hopp-
satser. Basic utvecklades ursprungligen av Dartmouth College i USA,
men har sedan tagits dver av Microsoft och integrerats som QuickBasic i
DOS och Windows. P& 90-talet har Microsoft lanserat vidareutvecklingen
Visual Basic som blivit ett modernt och populért utvecklingsverktyg. Den
nyaste versionen heter Visual Basic.NET och &r objektorienterad. | Visual
Basic kan man dven generera en exekverbar kod i efterhand genom att
kompilera kallkoden.

Pascal ar ingen forkortning for nagot utan har uppkallats efter Blaise
Pascal som konstruerade rdknemaskinen 1652. Pascal utvecklades av
Niklaus Wirth pd ETH (Eidgendssische Technische Hochschule) i Ziirich.
Tanken var att skapa ett kompilerande sprak for att lara ut programmering
for nyborjare genom att kombinera Basics enkelhet med Algols logiska
strukturer och dess algoritmiska upplagg. Pa 80-talet utvecklade mjukva-
ruféretaget Borland Turbo-Pascal som blev en stor succé pga kompila-
torns snabbhet och den integrerade programutvecklingsmiljon (IDE) som
mojliggjorde kompilering, felsdkning, editering och online hjélp i en och
samma miljé. Idag marknadsfor Borland Pascals objektorienterade vida-
reutveckling Delphi.

Fran procedural (C) till objektorienterad programmering (C++)

70-
80-talet

C++ 4r en direkt utvidgning och vidareutveckling av programmeringsspra-
ket C som 1972 utvecklades av Dennis Ritchie pa Bell Laboratories med
syftet att skapa ett sprak for programmering av operativsystemet Unix. |
den bemarkelsen ar C en biprodukt av Unix. Darfor finns ménga logiska
paralleller mellan C/C++ och Unix. Idag &r inte bara Unix utan dven andra
operativsystem inkl. Windows skrivna i C/C++. Styrkan i C bestar av en
kombination mellan enkelhet, strukturering och mojligheten att l&tt kunna
kommunicera med datorns hardvara. C har bland de moderna spraken den
basta formagan att hantera och kontrollera hardvaran, vilket favoriserar C
som programsprak t.ex. for operativsystem. Den stora frihet som C erbju-
der for hantering av bl.a. datorns primarminne med hjélp av pekare, kod

8

som ger atkomst till den fysiska adressen till data och pé gott och ont tilla-
ter manipulationer av minnesadresser genom pekararitmetik.

Det var dansken Bjarne Stroustrup som la grunden till vidareutvecklingen
av C. Under 70-talet hade man némligen konstaterat att procedural pro-
grammering (Algol, Pascal, C, ...) inte langre tillgodosag alla krav som
stora komplexa program stéllde med avseende pa underhall, férnyelse och
andringsbarhet. Ingen kunde sétta sig in i, andra och vidareutveckla ett
stort program om programmeraren hade lamnat foretaget. Det innebar ett
enormt sléseri med resurser. Dessutom utvecklades hardvaruteknologin s
snabbt att program som kunde koras pa de allt mer avancerade datorerna
blev allt stdrre och mer komplexa, speciellt nar det gallde grafiska tillamp-
ningar. Mjukvaruteknologin utvecklades inte alls i samma takt. For att 16-
sa alla dessa problem uppkom den nya programmeringsfilosofin objekt-
orienterad programmering (OOP) som en vidareutveckling av den traditio-
nella procedurala programmeringen.

1983 presenterade Bjarne Stroustrup programmeringsspraket C++. Han bi-
behdll hela C och la till de nya objektorienterade elementen, bl.a. klassbe-
greppet, som hade redan funnits t.ex. i Simula, ett norskt programmerings-
sprak fran 1967 som i sin tur var en direkt utbyggnad av Algol (Algorith-
mic language). Simulas klasser hade ”glomts bort”. Den ovan beskrivna
problematiken pa 70-talet gjorde att man kom ihdg dem. Forhallandet mel-
lan C och C++ illustrerar bast den “nya” filosofin tilliggskaraktér:

C++

¢ >

C &r nédmligen en delméngd av C++. Déarfor géller all C-kod &ven i C++,
men inte tvartom. Med andra ord, en C++ kompilator kan kompilera all
kod skriven i C, men inte tvartom. Sa den som lar sig C++ lar sig automa-
tiskt C. Delméngdrelationen mellan C och C++ &r unik bland hognivaspra-
ken.

C++ éar ett kraftfullt och populart programmeringssprak, vars styrka ligger
pa textbaserade konsolapplikationer. Inte att C++ vore olampligt for gra-
fiska tillampningar, bara att det &r lite jobbigt att skriva C++ kod for att
astadkomma grafik. En anledning ar att, nar C++ skapades, hade grafiska
tillampningar bara en begransad spridning. Med utvecklingen av webben
och dess grafiska miljo, med spridningen av Windows och grafiska an-
vandargranssnitt blev grafiken dominant. Idag har C++ fétt en renassans
med uppkomsten av 10T pga sin snabbhet och maskinnara egenskap.

9

90-talet

90-talet

2000

Javas uppkomst motiverades av en annan utveckling inom IT som man
skulle kunna kalla den grafiska eller Webbrevolutionen. Urspungligen har
Java utvecklats av Sun Microsystems som ett projekt for att skapa ett
sprak for programmering av hushallsmaskiner. Men detta projekt visade
sig vara en bubbla som sprack som mycket annat inom IT. Webben, som
revolutionerade IT, blev raddaren i ndden for Java. Men Java &r inte bara
grafik och webb. Sun satsade pé att utveckla Java till ett universellt ob-
jektorienterat sprak som var plattformsoberoende. Idag anvands Java bl.a.
for webbapplikationer, t.ex. Java Server Pages (JSP).

Sedan Sun Microsystems kopts upp av Oracle, ar Java en Oracle-produkt.
Oracle &r en av varldens ledande utvecklare av databashanterare. Java star
inte i fokus av deras affarsverksamhet. Senaste tiden har Java tappat pa
popularitet inte minst pga sin lite krangliga kod jamfort med nyare ut-
vecklingar som Python och C#.

Python skapades ar 1989 av Guido van Rossum, en forskare pa Natio-
nal Research Institute for Mathematics and Computer Science i Am-
sterdam och 4r en av de ovannamnda nyare utvecklingarna. Spréaket ar
interpreterande — liknande goda gamla BASIC — dessutom universellt.
Python kan enkelt och gratis installeras pa alla plattformar utan att man
behdver bry sig om licenser. Koden &r néstan sjalvbeskrivande, ligger
nara pseudokod och éterspeglar algoritmen. | vissa avseenden ar Python
t.0.m. revolutionerande. Med sma tekniska detaljer har man underlattat
kodningen avsevért. T.ex. har man avskaffat de obligatoriska symbo-
lerna { } for ett block. Det ar inte langre nddvandigt att avsluta en sats
med semikolon. De logiska indragningar som gor koden lasligare, har
man lyft till obligatorisk syntax. Man &r tvungen att folja god program-
meringsstil. Variabler behdver inte explicit deklareras. Ldpande kod
och funktioner behdver inte nodvandigtvis skrivas i klasser. Sprakets in-
terpreterande karaktir gor det mojligt att pa ett lekfullt satt experimen-
tera med kod. Pga dessa fordelar och sin enkla, smdidiga och kloka
kodningsteknik har Python mer eller mindre konkurrerat bort Java och
kan idag anses som varldens mest populdra programmeringssprak at-
minstone inom utbildning.

C# har sina rotter i programspraken C, C++ och Java och ar darmed
byggt pa det gamla, beprovade och valkanda. Den allra forsta versionen
av C# slapptes ar 2000 av Microsoft. Man tog 6ver allt som var bra och
skrotade allt som var lite krangligt hos de andra spraken. Men den vikti-
gaste fornyelsen var att det nya spraket integrerades i Microsofts .NET-
miljo for att gora det utbytbart mot de andra spraken inom .NET. En stor
del av varldens mjukvara utvecklas idag i C#.

10

1.2 Olika paradigm inom programmering

Vad ar ett paradigm? T.ex. fri marknadsekonomi &r ett paradigm inom ekonomi,
statligt styrd ekonomi ett annat. | programmering &r att koda pa ett satt som kan
ateranvandas aven i andra program ett paradigm, att inte gora sa ett annat. Gene-
rellt kan man sdga:

Ett paradigm &r en samling av regler, rekommendationer,
normer, konventioner, ménster, standards, metoder och te-
orier inom ett &mne, som delas och foljs av de flesta inom
&mnet under en viss tidsperiod.

Ett paradigm ger en orientering som styr handlingen och foreligger darfor fore er-
farenheten (a priori), likt en fordom. Efter erfarenheten jamfors och beddms hand-
lingen med paradigmet (a posteriori), likt en lardom.

Overensstammer resultatet efterét inte med paradigmet, kan paradigmet atminstone
delvis ifragasattas. Ofta leder amnets progression efter langre tidsperioder till byten
av paradigm, s.k. paradigmskiften, forutsatt att ett nytt paradigm har stallts upp
som béttre uppfyller de 6nskade kraven. | programmeringens historia &r vi vittnen
for manga sadana paradigmskiften, se Paradigmskifte (sid 14).

Maskinorienterad programmering

Aven kallad maskinnara programmering, vilket innebar att man skriver instruk-
tioner som enkelt och snabbt, ja néstan direkt kan utféras av datorns processor
(CPU). Maskinorienterade programmeringssprak ligger allra niarmast hérdvaran.
Ursprungligen kan sadana maskinorienterade instruktioner endast utféras pa en
konkret maskin, eftersom de ar definierade just for den aktuella hardvaran. Ett ty-
piskt exempel for ett sadant sprak ar Assembler som fortfarande ar lasbar kallkod
som omvandlas till maskinkodens ettor och nollor av ett speciellt program som he-
ter assemblator. Sjalva dversattningsprocessen kallas for assemblering. Fordelen
med maskinnara sprak ar den enkla och darmed snabba dtkomsten till hardvaran,
vilket kan vara avgorande i vissa sammanhang, t.ex. for spelkonsoler. Nackdelen &r
den svart lashara och icke-portabla koden.

Deklarativ programmering

Innebar att man anger vad som ska goras, inte hur det ska ga till. Man nojer sig
med att saga vad man vill ha. Tillvagagangssattet tas hand om av programmerings-
spraket. Ett typiskt exempel for ett sddant sprdk &r SQL som star for Structured
Query Language och &r standardspraket for kommunikation med databaser. Med
en SQL-sats staller man en fraga till en databas. Man far som svar den datamangd
som ar efterfragad i SQL-satsen. Hur SQL letar efter och hittar denna dataméangd i
den véldigt komplexa databasen, behdver programmeraren inte bry sig om. Man
deklarerar endast sitt 6nskemal, precis som man bestaller en matratt p& en retau-
rang. Deklarativ programmering har manga underkategorier.

11

Funktionell programmering

En typ av deklarativ programmering ar funktionell programmering. | detta para-
digm bestar ett program av en samling matematiska funktioner som definieras och
exekveras direkt med minsta mojliga tidsatgang (runtime). Man undviker kod som
anses vara onddig overhead och fokuserar pa effektivitet och funktionalitet hos de
mest sma moduler utan att beh6va ange i vilken ordning de ska exekveras. Ett ty-
piskt funktionellt sprak — dessutom det aldsta — ar Lisp. | Visual Studio finns dven
ett funktionellt sprak som heter F#. Historiskt har funktionell programmering sitt
ursprung i ett matematiskt forskningsprojekt pa 30-talet som resulterade i den s.k.
Lambdakalkylen. | C# har man integrerat dessa tankar i spraket (Lambdauttryck).

Logikprogrammering

En annan typ av deklarativ programmering ar logikprogrammering som baseras pé
matematisk logik. Ett logikprogram bestar i forsta hand av ett antal axiomer som
kan anses vara en bas av definitioner och regler som alla féljande instruktioner
maste folja. All kod som skrivs kommer att exekveras endast enligt dessa axiomer.
Man stéller en fraga och far svaret som en logisk slutsats ur axiomsystemet. Logik-
programmering har sitt ursprung i 70-talets forskningsaktiviteter kring artificiell
intelligens. Det mest k&nda logikprogrammet &r Prolog.

Handelsestyrd programmering

Detta paradigm ar typiskt for grafiska applikationer (GUI). Programkdérningen ar in-
te langre till 100% forbestamd av utvecklarens kod utan kan &ven styras — atmin-
stone delvis — av anvéndaren under programkérningen genom musklickningar och
tangenttryckningar, s.k. handelser. Aven andra typer av handelser &r tankbara som
paverkar bade programforloppet och avslutningen i en mycket stérre utstrackning
an det ar fallet med rent textbaserade program. Exekveringen startar ofta i ett fon-
ster med grafiska komponenter, som visas nér programmet kors. Efter en handelse
atergar kontrollen till operativsystemet, vilket dock inte betyder att kérningen &r
avslutad, utan att programmet ar redo att ta emot nasta handelse osv. Handelsestyrd
programmering anvands bl.a. i Windowsprogrammering och ar implementerad
t.ex. i C# Windows Forms Applications med sin stora verktygslada av forprogram-
merade grafiska komponenter, s.k. Controls.

Spaghettiprogrammering
Sjalvklart finns det inte ett uttalat paradigm som heter s&. Det 4r snarare en ironisk

beteckning, ett smeknamn som man ur ett kritiskt perspektiv gett denna typ av
programmeringsvana som man i brist pa bittre 1osningar anvant i de aldre spraken.

S& lange det inte fanns kontrollstrukturer anvande man sig av s.k. hoppsatser for
att astadkomma loopar. Det reserverade ordet goto skickar programfldet till ett
annat stélle i koden vilket man markerar med en Label, t.ex. med L. En label &r
ingen variabel utan en symbol som endast markerar ett stélle i koden. Den anvands
i goto-satsen for att skicka programflodet till det markerade stallet. Ironiskt nog
finns det reserverade ordet goto fortfarande i C#. T.e.x. kan det se ut s& har:

12

L: Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");
guessedNo = int.Parse (Console.ReadLine()) ;

if (guessedNo != 17) goto L;

Om det gissade talet inte &r 17 dvs om anvéndaren gissat fel, ska programmet hop-
pa till L dar anvandaren ges ater mojligheten att géra en ny gissning som sedan
prévas, osv. Om daremot det gissade talet ar 17, dvs om anvéndaren gissat ratt,
ager hoppet inte rum. Man har med en i£-sats, som &r en enkel selektion, i kombi-
nation med goto lyckats konstruera en loop.

Varfor kallar vi detta for spaghettiprogrammering nér koden ovan fungerar? An-
ledningen &r att hoppsatser leder i storre program till férvirring. Forestéll dig att
man har ett stort program, anvander valdigt manga goto-satser och utnyttjar fullt
ut friheten att placera labels var som helst. Resultatet blir en kod som &r svart att
kontrollera, uppdatera och underhalla. Programflddet liknar till sist en spaghettirétt.
Séadana program uppfyller inte langre kraven om laslighet, forstaelighet och an-
dringsbarhet. Det marks speciellt ndr en programmerare byter jobb och en efter-
tradare ska vidareutveckla programvaran. Ofta blir det helt omojligt for eftertrada-
ren att satta sig in i koden. Redan pa 60-talet ledde detta till en programvarukris
och initierade utvecklingen av procedurala programmeringssprak som Algol, Si-
mula, Pascal, C, ... dir goto-satser kan och bor undvikas. Procedural programme-
ring bannlyser anvandningen av goto-satser da en okontrollerad anvandning av
hoppsatser i stérre program leder till spaghettiprogram som inte langre &r l&sliga,
forstaeliga och andringsbara. Procedural programmering ersatter alla hoppsatser
med kontrollstrukturer dér det inte langre finns nagra labels da dessa ar hardkodade
och placerade pa fasta platser. Man borde ersétta goto-satsen med en kontroll-
struktur av typ repetition, t.ex. en while-sats.

Procedural programmering

Motsatsen till deklarativ programmering &r imperativ programmering. Procedural
programmering &r den &ldsta typen av imperativ programmering. H&r anger man
inte bara vad som ska goras, utan dven — och framfor allt — hur det ska ga till.
Tillvdgagangssattet ar en vasentlig del av imperativa sprak. Ett tillvigagangssatt
som exakt och entydigt beskriver hur man loser ett problem, kallas for algoritm.
Man kan beskriva en algoritm p& manga olika satt, t.ex. pa vanligt sprak, med hjélp
av grafik, med pseudokod, i form av ett flédesschema osv. Valjer man programkod
for att beskriva algoritmen, har man ett datorprogram. Ofta maste dven viss data
(t.ex. indata) laggas till for att 16sa problemet. Déarfor stallde upp Niklaus Wirth,
skaparen av programspraket Pascal, pa 60-talet foljande definition:

[Program = algoritm + data]

Data dr information i organiserad, strukturerad form. Men vad exakt &r en algoritm,
och framfor allt hur kan algoritmer beskrivas? Dessa fragor kommer vi att 4gna oss

13

at i resten av det har kapitlet. Wirths definition aterspeglar en algoritmorienterad
syn pa programmering som dven kallas procedural programmering. Procedur &r ett
annat ord for algoritm. Modern till alla procedurala sprak ar Algol.

Objektorienterad programmering (OOP)

Om man i Wirths definition Program = algoritm + data lagger betoningen pé data
istallet for pa algoritmen och inte langre betraktar data som ett slags bihang till
algoritmen utan som objekt kommer man till objektorienterad programmering.
Den nya definition som kom upp pa 80-talet och aterspeglar den objektorienterade
synen pa programmering &r:

[Program = Modell av verkligheten]

OOP syftar at att efterlikna verkligheten. Man vill avbilda den reala varlden — &tmin-
stone den del som tillater datorisering — och konstruera en modell av den i sina dator-
program for att kunna simulera verkligheten genom att testa modellen. For att und-
vika filosofiska diskussioner kan vi anta att den reala vérlden bestar kort sagt av ob-
jekt. Varlden kring oss ar full med objekt: Manniskor, byggnader, bilar, tag, flyg-
plan, trdd, mobler, bocker, butiker, skolor, bibliotek, kontor, anstallda, kunder, varor,
fakturor, order, bokningar, kurser osv. Objekten kan vara verkliga eller virtuella. Ett
datorprogram forsoker att beskriva dessa objekt. Beskrivningen kodas i klasser.

Ett objekt kan i regel utfora vissa aktioner eller operationer. | den objektorienterade
programmeringens terminologi kallas de for metoder — samma som i den procedurala
programmeringen heter funktioner. En metod &r en funktion som definieras i en
klass. Namnbytet beror pa att man i OOP maste definiera sina funktioner i klasser,
darfor att metoderna i regel ska vara bundna till objekt. Forenklat kan man sdga: nar
ett objektorienterat program kors anropar metoder varandra och skickar darvid objekt
till varandra. P4 sa satt simuleras verkligheten.

Paradigmskifte

Det som i programmeringshistorien gjorde att man behdvde objektorienterad pro-
grammering var den véxande komplexiteten hos program under 70-talet. Program-
mens storlek var avgoérande for den vixande komplexiteten. Man insag att det inte
langre rackte till att skriva och testa program som fungerade just da. Det var
nodvandigt att med rimliga kostnader kunna dven underhalla stora program, fornya
och vidareutveckla dem sa att de fungerade aven i flera ar och att de framfor allt
kunde anpassas till nyuppkomna situationer utan o6verkomliga svarigheter. Det i
sin tur krévde att man redan i designstadiet behdvde ett annorlunda upplégg. Foku-
set forskjots fran problemldsning till modellering av verkligheten. Objektorienterad
design kom in i bilden. Allt detta var endast med procedural programmering inte
langre mojligt. Ett s.k. paradigmskifte hade blivit nédvandigt, dvs en andring av
helhetssynen pa programmering.

14

1.3 Algoritmer och deras beskrivning

Ménga tror att algoritmer endast har med matematik att géra. Aven om algoritmer
historiskt har introducerats av matematiker kan de anvéandas pa all probleml@sning.
Man kan t.0.m. tillampa algoritmer pa vardagliga problem. Samtidigt ligger de till
grund for all programmering. Ett datorprogram &r ingenting annat &n en algoritm
beskriven i datorns sprdk. Men aven foljande vagbeskrivning ar ett fullgott exem-
pel pa en algoritm:

s

' ... gd ut fran ditt hus till vinster, fortsdtt rakt fram,
svang till hoger vid trafikljuset, fortsatt sedan andra
korsningen till vanster, dar finns ett gult hus, pa 2:a va-
ningen bor jag ...”

En algoritm &r alltsa ett tillvidgagangssétt att I6sa ett problem — vilket som helst.
Och det behdver inte heller vara datorn som léser det. Vi kommer att precisera
denna definition lite senare (sid 17). Problemet som ska I@sas kan sakna lésning —
dé kan det inte heller finnas ndgon algoritm. Om daremot problemet &r I6sbart, kan
det ha ingen, en eller flera algoritmer. Vi sysslar har endast med sadana problem
som har minst en algoritm.

Historiens forsta algoritm

Det ar alltid larorikt att blicka tillbaka till historien. Sjalva ordet algoritm hérstam-
mar fran ett namn pa en person: namnet pa den framstaende persiska matematikern
Al-Kharazmi”. Namnet har sedan latiniserats och blivit algoritm. Han levde pé 800-
talet. I sin berémda bok om Algebra stéallde han upp historiens forsta algoritm som
beskriver addition och multiplikation av heltal. Den anvénds &ven idag. Men kunde
man inte addera eller multiplicera heltal pa 800-talet? Jo, redan langt tidigare kunde
man rakna med tal i Egypten, Indien, Persien och Grekland. Vad var i sa fall Al-
Kharazmis historiska prestation? Ja, det var inte att komma pa hur man adderar
eller multiplicerar heltal — for det var ju redan ként, utan hur man i allménna orda-
lag beskriver tillvagagangssattet, dvs formulerar en algoritm for dessa operationer.

1000 ar mellan praktisk 16sning och formell beskrivning

Det ar anméarkningsvért att beskrivningen av hur man réknar med heltal kom till
mer an 1000 ar efter den praktiska l6sningen. Orsaken &r att den korrekta, allmanna
beskrivningen som ska halla i alla tankbara situationer, ar mycket svarare att astad-
komma an den faktiska losningen av ett eller en klass av problem. Att sjalv ga en
vag som man kanner till ar enklare an att formulera en korrekt vagbeskrivning som
alla forstar och kan folja. Anledningen ar att algoritmer ar generella till sin natur,
och just det ar tjusningen: Att forstka beskriva dem sa att de haller i alla situatio-
ner, det ar konsten. Detta géller &ven idag: Program — det moderna sattet att beskri-

5

S& uttalas hans namn pé persiska idag (utan prefixet Al- som &r arabiska). Han ar fodd i
Kharazm, en antik region som fanns i nuvarande norddstra delen av Iran (Khorasan) mot
Turkmenistan och Uzbekistan. Pa den tiden var Iran ockuperat av araberna.

15

va algoritmer — maste fungera under alla omstandigheter och ska helst aldrig kra-
scha. Dessvarre vet vi ju att sa inte &r fallet. En av utmaningarna inom program-
mering ligger just i att skriva program som fungerar i alla situationer. Det vi kan
lara oss av det 1000-ariga glappet mellan praktisk 16sning och formell beskrivning
ar: Satsa tid och energi pa att forst analysera det problem du vill I16sa med ett pro-
gram. Fokusera pa att beskriva I6sningen av problemet sa generellt som mojligt.

Exempel pa algoritmer
| vardagen anvander vi algoritmer hela tiden, om &n omedvetet. Har nagra exem-
pel:

e Matrecept vars anvandning kan jamforas med programkoérning pa datorn:

Kok

Révaror (indata) — g (dator)

| Matratt (utdata)

Matrecept (algoritm/program)

Matrecept skrivs fortfarande med vanligt sprak men man kan konstatera att det
finns en viss stil som &r typisk for alla matrecept.

o |IKEA:s monteringsanvisningar for att satta ihop delarna till en mébel. Hér
anvands en kombination av text och grafik som ar mycket effektiv. Grafiken
forenklar algoritmen avsevért. ”En bild sdger mer &n tusen ord.” Pa kopet fér
man en slags internationalisering, ett oberoende av det lokala spraket, vilket
gor att algoritmen forstas Gver hela vérlden.

e Bruksanvisningar av alla slag ar exempel pa algoritmer, &ven om manga av
dem i praktiken ar vardeldsa. Men det finns daliga algoritmer pa andra omra-
den ocksa.

e Manualer for datorprogram som visar hur ett program ska anvéndas.

e Konstruktionsritningar som ingenjérer gor for att en viss produkt ska kunna
tillverkas i fabrik. En arkitektritning av ett hus &r ett specialfall av det. Har har
grafiken tagit dver helt och héllet.

e Partiturer: Noter i musik som anvands for att spela ett musikstycke och som
omfattar noggranna anvisningar om hur en hel orkester ska spela. Ett speciellt
”sprak” anvinds som varken bestdr av text eller grafik, utan snarare av sym-
boler langs en tidslinje.

e Spelregler ar snarare ett negativt exempel: De talar mest om vad man inte far
gora och lamnar ett stort utrymme for hur man far spela inom reglernas ram.
Darfor finns tva skilda problemstillningar. Den ena &r: “Hur far jag spela?”

16

Spelregler ger delvis (negativa) svar pa det. En helt annan problemstallning &r:
”Hur vinner jag spelet?” Spelteori som involverar sannolikhetsléra behandlar
denna fraga. | spelteori brukar man tala om strategier snarare &n algoritmer.
Har befinner vi oss i ett gransomréde dar problem inte alltid har en entydig
I6sning eller saknar algoritm. | fortsattningen kommer vi att undvika sddana
fréagestallningar. Vi betraktar endast problem som ar I6sbara och har minst en
algoritm. Exemplet belyser dock en viktig aspekt: Inte bara véagen till l6sning
maste beskrivas. Forst méste problemstéllningen vara klart och exakt formule-
rad sd att man kan avgdra om det finns en entydig I6sning och minst en algo-
ritm.

Definition av algoritm

L&t oss titta pd vad som ar gemensamt for exemplen ovan (utom spelreglerna), for
att kunna fornulera en generell definition. Vilka typiska faktorer forekommer i alla
exempel?

For det forsta bestar de alla av en rad anvisningar om vad som ska goras for att 16sa
det givna problemet. Fragan &r: Ska man tillata alla slags anvisningar? Om de leder
till problemets 16sning, varfor inte? Men leder alla slags anvisningar till 16sningen?
T.ex. anvisningen “Bygg ett hus!” &r helt vérdelds. Ingen av oss kan bygga ett hus
med bara denna anvisning. Problemet &r ju just hur man bygger huset. Anvisnin-
garna maste vara mycket enklare och mer detaljerade. Vem som helst ska kunna ut-
fora dem. Sadana anvisningar kallas elementara instruktioner. Bara sadana kan
tillatas i en algoritm om de ska leda till problemets I6sning.

For det andra. Underséker man de ovanndamnda exemplens innehall kan man kon-
statera att anvisningarna maste utforas i en viss ordning. Det gar inte att kasta om
ordningen. Man inser redan vid receptexemplet att man forst maste knada degen
och sedan stélla in den i ugnen, inte vice versa. Vid partiturexemplet &r ju ordnin-
gen helt avgérande. Och s ar det i alla algoritmer. Ordningsféljden for de elemen-
tara instruktionerna maste finnas med i algoritmen. Sjalvklart maste en algoritm
ocksa ange nar instruktionerna ska upphéra. Om vi sammanfattar kan vi formulera
féljande definition:

En algoritm ar en foljd av precisa anvisningar, s.k. elementara in-
struktioner, som loser ett givet problem, inklusive anvisningar om i
vilken ordning instruktionerna ska utféras och nar de ska avslutas.
Dvs en algoritm méste ha ett exakt avs/utningskriterium.

Av stor betydelse, speciellt for datoriseringen, ar att algoritmen maste vara tolk-
ningsbar pa ett enda satt. Det far inte finnas tvetydigheter i formuleringen. Datorn
kan ju bara tolka vara anvisningar pa ett enda satt. Svarigheten ligger alltsé i algo-
ritmens beskrivning, vilket ar en god illustration till det 1000-ariga glappet mellan
praktisk 16sning och formell beskrivning som namndes pa sid 15. Det &r i regel sva-
rare att beskriva en algoritm &n att 16sa ett specifikt problem i en specifik situation.

17

Anledningen ar att algoritmer maste vara generella till sin natur: De maste halla i
alla situationer. Féljande dilemma uppstar:

Hur beskriver man en algoritm bast, sa att den kan tolkas endast pa ett sétt, men
samtidigt behalla sin generella karaktar? Vi ska nu diskutera ndgra hjalpmedel som
kan anvandas for att formulera sadana algoritmer:

Olika satt att beskriva algoritmer

Vanligt sprak ar ett sétt att beskriva algoritmer, t.ex. vagbeskrivningen till en
kompis. Storsta fordelen med det ar att alla som kan spraket direkt forstar
algoritmen utan att behdva lara sig ndgot nytt. Nackdelen &r att det ofta kan
tolkas pa olika satt. Och tur ar det! Annars skulle man ju t.ex. inte kunna skri-
va en dikt eller njuta av den. Men just i samband med algoritmer da man efter-
stravar entydighet, & mdjligheten till olika tolkningar en nackdel.

Pseudokod &r en hybrid (blandning) mellan vanligt sprak och formaliserad
kod, ett forsok att minska det vanliga sprakets tvetydighet genom att infora
vissa strukturer och t.0.m. grafiska stilmedel i layouten. Allt som pa ett enty-
digt satt beskriver en algoritm, &ven en matematisk formel, kan anvandas som
pseudokod. | nasta avsnitt tar vi upp ett exempel pa pseudokod med vanligt
sprak kombinerad med generella kontrollstrukturer (sid 22) som forekommer i
alla algoritmer. P& sa satt uppndr det vanliga spraket en hdgre grad av entydig-
het, noggrannhet och struktur.

Flédesschema eller flédesschema &r en variant av IKEA:s monteringsanvisnin-
gar som kombinerar text och grafik med en klar dominans mot det senare.
Man anvénder sig av geometriska figurer som symboliserar algoritmens bygg-
stenar och av pilar som visar flédet i algoritmen och definierar instruktioner-
nas ordning. Med dessa fa stilmedel uppnar man en hog noggrannhet i beskriv-
ningen, eliminerar tvetydigheter och askadliggor algoritmens logiska struktur.
Det ténkta héndelseforloppet syns tydligt. | det avseendet ar flédesschema
overlagset bade vanligt sprak och pseudokod. Flodesschemassymbolik ar ett
utmérkt medel som lampar sig inte bara for beskrivning av fullstdndiga algorit-
mer, utan ocksa for att dskadliggora logiken hos mindre, men kritiska delar av
ett program. Vi kommer att anvanda oss av detta medel i hela boken.

Programkod &r den variant av algoritmbeskrivning som anvands for att lata
en dator utfora algoritmen. Darfor maste den kunna tolkas av datorn. Program-
koden oversatts till ett sprk, kallat maskinkod som datorns processor forstar.
Programkoden daremot — &ven kallad kallkod — &r skriven i ndgot programme-
ringssprak som man méste lara sig. Medan kallkod forstas av manniskan, men
inte av datorn, forstds maskinkod av datorn, men inte av manniskan.

Andra satt att beskriva algoritmer finns ocksa. Inget av dem har lyckats etab-
lera sig som standard. Anledningen &r att det &r oforutsdgbart vilka metoder
som i allménhet kan l6sa problem. Manga av de traditionella satten kan be-
tecknas med det samlande namnet pattern designs. Andra anvander begrepp

18

som strukturdiagram, Mind Maps eller beslutstabeller. Mest kant &r dock UML
= Unified Modeling Language som &r ett sprak for objektorienterad design och
modellering. Man anvander UML for att att planera, utveckla och visa struktu-
ren hos avancerade objektorienterade system. UML anvéands for att 1agga upp
och modellera stora programmeringsprojekt, vilket forutsatter bekantskap med
den objektorienterade programmeringens terminologi. Vi kommer att ta up
UML senare i avsnitt 4.9 (sid 93). | nasta avsnitt ska vi bdrja utveckla de tradi-
tionella struktureringsverktygen pseudokod och flddesschema.

19

1.4 Traditionell design pattern med
flodesschema

Lat oss som exempel ta foljande beskrivning pa ren svenska av en vardaglig syssla:

”K. gar upp kl. 6 och duschar tills kroppen kanns frasch.
Sedan torkar K. sig, tar pd sig kladerna och ater frukost.
Vid frukosten lyssnar K. pé& radions trafikinformation.
Om det ar mycket biltrafik, gar K. ut, vantar tills ingen bil
kommer, gar éver gatan och tar bussen till jobbet. Annars
tar K. bilen till jobbet.”

Det ar en beskrivning av en algoritm, 13t oss kalla den for Morgonsyssla, som an-
vander sig av det vanliga spraket. Egentligen kan den knappast misstolkas nar den
anvands med lite sunt férnuft. Anda vill vi skriva om den, férst som pseudokod och
sedan som flédesschema for att lara k&nna de nya begreppen. Som vi ska se kom-
mer detta att leda till en precisering av algoritmen.

Pseudokod till algoritmen Morgonsyssla

GauppKkl. 6
Duscha TILLS kroppen kanns frésch
Torka och ta pa dig kladerna
At frukost och lyssna pa radio
OM det ar mycket biltrafik

ga ut

vénta TILLS ingen bil kommer

ga ver gatan och ta bussen till jobbet
ANNARS

ta bilen till jobbet

L&t oss analysera denna pseudokod lite narmare. Vad skiljer den fran vanligt
sprak? Vi har gett texten en ny form utan att andra innehallet. Nya “regler” for for-
men har inforts: For det forsta finns det varken punkter eller kommatecken mellan
satserna. For att skilja dem at, borjar istallet varje sats pa en ny rad. For det andra
innehaller varje sats endast en elementar instruktion. FOr det tredje ar vissa rader
indragna vilket visar att instruktionerna pa dessa rader, ar underordnade andra in-
struktioner dvs &r delar av dem. Sa kan vi skilja mellan huvud- och underinstruk-
tioner. Algoritmen har 5 huvudinstruktioner:

I. Gauppkl.6
Il. Duscha TILLS kroppen kanns frasch
Il. Torka och ta pa kladerna
IV. At frukost och lyssna pa radio
V. OM ...
ANNARS
20

Att vi raknar oM-ANNARS-satsen som en instruktion, beror pd att de hor ihop och
bildar ett par: ANNARS skulle forlora sin mening om det skiljdes fran oM. Sedan har
algoritmen 4 underinstruktioner, 3 under oM och 1 under ANNARS. De &r alla indrag-
na. Underinstruktionen ”ga ut” skulle kunna betecknas med V.a eftersom den till-
hér huvudinstruktion V. Undersinstruktionen “vénta TILLS ingen bil kommer”
skulle i sa fall fa beteckningen V.b. Undersinstruktionen g4 dver gatan och ta bus-
sen till jobbet” blir V.c och ta bilen till jobbet” V.d. Hela algoritmen bestar av 5
huvud- och 4 underinstruktioner.

Villkor

Lat oss nu fordjupa analysen av pseudokoden och ta itu med de lite mer invecklade
instruktionerna, t.ex. med Il:an:

Duscha TILLS kroppen k&nns frasch

Hur lange star K. under duschen? Inneborden av TILLS sager att detta avgors av
hur lange kroppen kanns ofrasch. Dvs K. fragar sig standigt, sjalvfallet omedvetet:
kanns kroppen frasch, ja eller nej? Om nej, fortsatt duscha! Om ja, sluta! Detta
hander kontinuerligt under duschandet. Hur manga ganger, &r inte bestamt, utan
avgors av K.:s subjektiva svar pa fragan. Menar K. att kroppen forblir ofrasch trots
duschandet, da ska K. enligt algoritmen fortsatta att duscha i all evighet — rent hy-
potetiskt! | pseudokoden formuleras kanns kroppen frasch daremot inte som fraga,
utan som ett villkor som ingdr i TILLS-satsen, ett villkor for att fortsitta eller
avsluta duschandet. Villkoret testas gang pa gang: ar det sant, ska K. avsluta du-
schen. Ar villkoret falskt, ska K. duscha vidare. Valet avgors av villkorets s.k. san-
ningsvarde, dvs om det ar sant eller falskt. Ett villkor kan antingen vara sant eller
falskt. P4 sa sétt skiljer sig ett villkor fran en instruktion. En instruktion utfors, me-
dan ett villkor testas. Testet avgérs av villkorets sanningsvarde. Darmed avgors
aven om den instruktion som knyts till villkoret, ska utforas eller ej.

Det finns flera villkor i pseudokoden, utmérkta i kursiv stil. Nasta villkor férekom-
mer i huvudinstruktion V:

OM det ar mycket biltrafik

ANNARS ta bilen till jobbet

Den kursiva texten &r ett villkor som avgor om K. ska ga dver gatan och ta bussen
eller ta bilen till jobbet. Ar villkoret sant (mycket trafik), d& ska K. ga dver gatan
och ta bussen. Ar villkoret falskt (inte mycket trafik), ska K. ta bilen till jobbet.
Men till skillnad fran TILLS-satsen testas villkoret har endast en gang, beroende pa
den annorlunda logiska innebdrden av om.

Ett tredje villkor finns i underinstruktionen V.b:

vénta TILLS ingen bil kommer

21

Logiken avgors igen av TILLS dvs K. ska vanta s lange det kommer nagon bil.
Nar det inte langre kommer nagon bil, ska K. sluta vanta. K. stéller sig gang pa
gang fragan: kommer nagon bil, ja eller nej? Om ja, fortsétt vanta! Om nej, sluta
vanta! Kommer det bilar hela tiden, da ska K. enligt algoritmen vénta i all evighet!

Kontrollstrukturer i algoritmer

Har vi darmed kartlagt pseudokoden till algoritmen Morgonsyssla? Néstan! Vi har
identifierat instruktioner (normal stil) och villkor (kursiv stil). Vi ndmnde dven or-
den TILLS och oM-ANNARS (fet, versal stil), men vi har &nnu inte identifierat dessa
ord. De ar ju varken instruktioner eller villkor, sa vad ar de? Lat oss for ett 6gon-
blick glémma algoritmen Morgonsyssla och ténka oss en helt annan algoritm som
ska l6sa ett helt annat problem. Vilka ord skulle &ven forekomma i den nya algorit-
men? Sakert ingen K.”, inget jobb, ingen dusch, ingen bil, ingen Men just det!
Orden T1LLS och oM-ANNARS kan finnas i den nya algoritmen ocksa. Och de kan
forekomma inte bara i denna algoritm utan i alla algoritmer. De &r nyckelord och
fungerar som algoritmens byggstenar. | programmering kallas de fér kontrollstruk-
turer eftersom de &r generella strukturer som styr och kontrollerar hela algoritmen.
Ja, alla algoritmer &r uppbyggda av dessa kontrollstrukturer. Behdrskar man dem,
har man tagit ett stort steg mot forstaelse av algoritmer och darmed forstaelse for
programmering. Det finns tre grundldggande kontrollstrukturer i alla procedurala
programmeringssprak:

e Sekvens (foljd)
e Selektion (val)
e Repetition (upprepning, loop)

For att rita flodesschema anvénds foljande symboler:
Algoritmens start och slut ritas med en oval.

Instruktion 1

En instruktion ritas som rektangel. Ett villkor ritas som romb.

Villkoret skrivs in i romben och kan dven formuleras som fréga.
Ordningen i algoritmen (flodet) visas med pilar.

_—

Det finns fler symboler &n de som anvénts i flodesschemat till algoritmen Morgon-
syssla som ska vara en exakt 6verséttning av den algoritm som vi ursprungligen for-
mulerade forst pa vanligt sprak och sedan som pseudokod. Precis som vi gav texten i
vanligt sprak en ny form utan att andra innehallet nar vi skrev om den till pseudokod,
ska dven vid dverséattning till flodesschema ytterligare en ny form ges till algoritmen
utan att andra innehéllet, framfor allt inte den logiska inneborden. Flodesschemats
fordel kan beskrivas med ordspréket En bild sager mer an tusen ord. Nu ska vi rita
algoritmen Morgonsysslas flédesschema.

“ Precis som i litterdra verk protagonisten kan vara vem som helst (t.ex. Kafkas romanfigur
”Herr K.””) kan &ven algoritmens K. std for vem som helst. | pseudokoden och dven i flodes-
schemat pa nasta sida forekommer inte ens K., vilket visar att det inte handlar om personen
utan om problemet At ta sig till jobbet”. Vi har att géra med problemldsning (procedural),
inte med modellering av verkligheten (objektorientering).

22

Flodesschema till algoritmen Morgonsyssla

| Ga uppkl. 6 |

Loop*

nej

Kroppen
frésch?

ja

| Torka och ta pé sig kladerna |

'

| Ata frukost & lyssna pé radio |

Mycket
biltrafik?

Ta bilen

Loop*

Kommer
né&gon bil?

G4 over gatan & ta bussen |

* Loop = upprepningsslinga med inbyggt villkor som testas gang pa gang.
23

Nér vi sdger att Morgonsyssla-algoritmens flodesschema ska bli en exakt dversatt-
ning av den algoritm som vi ursprungligen formulerade pa sid 20 menade vi forstas
den logiska likheten, inte den sprakliga. T.ex. stér i pseudokoden “vénta TILLS in-
gen bil kommer” medan i flodesschemat star ”Kommer négon bil?”” och flédessche-
mat svarar pd denna friga: “om ja, vinta” vilket innebir “vinta SA LANGE det kom-
mer ndgon bil”. Formuleringen dr logiskt likvirdig med “vinta TILLS ingen bil
kommer”. Hade vi formulerat frigan negativt “Kommer ingen bil?”” hade det lett till
dubbel negation vid svaret nej, vilket forsvarar forstaelsen. For att forenkla har fra-
gan i flodesschemat formulerats positivt. Undersdk sjalv om det finns flera exempel
pa spraklig olikhet men logisk likhet mellan den ursprungliga texten och flodessche-
mat. Det &r en utmarkt 6vning att kontrollera om vi pa vagen fran vanligt sprak till
flodesschema verkligen inte andrat algoritmens innehall.

Om man jamfor pseudokoden med flédesschemat till Morgonsyssla kan man kon-
statera att det &r avsevart enklare att fa en snabb Gverblick 6ver algoritmen nar man
tittar pa flodesschemat. Fragan uppstar varfor man i sa fall Gverhuvudtaget ska syssla
med pseudokod. Svaret &r att det &r programkod som vi slutligen ska skriva, och pro-
gramkod liknar pseudokod mer &n flédesscheman. Vi kan inte mata datorn med gra-
fik som &r huvudingrediensen i flédesscheman. Pseudokodens vérde ligger i ndrheten
till programkod. Dessutom &r den oberoende av programmeringssprak. Flodessche-
ma daremot &r ett utmérkt hjdlpmedel som kan anvéndas innan man skriver
programkod for att strukturera sina tankar om ett problems 16sning som ska tas fram
med ett datorprogram. Aven detta verktyg &r helt oberoende av programmerings-
sprak. Ar problemet enkelt eller om en klar struktur for 16sningen redan finns, be-
hoévs ingen flodesplan. VVéaxer problemets komplexitet rekommenderas en flodessche-
ma kombinerad med pseudokod.

24

1.5 Tillagg av C# i Visual Studio

Har forutsatts att du redan installerat Visual Studio pa din dator och anvant denna
IDE for att kora andra programmeringssprak. Nedan beskrivs hur du kan lagga till
spraket C# till din befintliga miljo, utan att behdva av- eller ominstallera den tunga
programvaran i sin helhet.

1

2)

3)

4)

5)

6)

7)

Ga till dators Start-knapp och starta Visual Studio Installer.

Klicka pa knappen Modify som befinner sig till héger om ikonen och texten
Visual Studio Community 2022.

Visual Studio Installer 6ppnar ett stort vitt fonster med den lilla rubriken
Modifying — Visual Studio Community 2022 ... och den bld understrukna fliken
Workloads. | den finns ett antal rutor. Leta efter féljande ruta (3:e till hdger):

Markera rutan med]
R m .NET desktop development v

rUbrIken NET deSktOp '—.J Build WPF, Windows Forms, and console applications using

development Ie[<Ialo]sd LI

bocka den lilla bl rutan i

det évre hdgra hornet.

C#, Visual Basic, and F#.

Klicka sedan pa i det nedre hogra hérnet av det stora vita fonstret
Installing — Visual Studio Community 2022 Du kan sjélv vélja bland alternativen
Install while downloading eller Download all, then install. Detta kan ta ett tag,
ev. ganska lange — beroende pa din Internet-uppkoppling och din dators presta-
tion.

Nér du lyckats med installationen (Done installing) startas Visual Studio antin-
gen automatiskt eller du kan gora det sjalv fran Start-knappen. Stang rutan Vi-
sual Studio Installer. Féljande eventualiteter kan dyka upp:

e Om du uppmanas att skapa ett Microsoft-konto (Sign in), gor det. Det &r
gratis, gar fort och ar inte problematiskt. Anteckna ditt 16senord for senare
uppdateringar.

e Om du far upp en ruta med bl.a. dropplistan Development Settings Valj
C#. Om alternativet inte finns lat General std dar. Klicka sedan pé& knap-

pen SEURYEIEIRSI0e]le].

Efter lyckad tillaggsinstallation av C# f6lj strikt de anvisningar du hittar i ndsta
avsnitt 1.6 C# Console Applications. Sma, men avorande detaljer skiljer sig fran
de anvisningar du lart dig tidigare. Det galler speciellt typen av projekt direkt i
borjan, punkt 1. a) och filtypen lite senare, punkt 2. a). Skynda inte pa utan var
noga i att strikt félja instruktionerna, d&ven om mycket kanns redan bekant. Bo-
kens alla program kommer att vara av typ C# Console Applications. Du kan
&ven hér anvanda samma projekt for alla konsolapplikationer.

25

1.6 C# Console Applications

Starta Visual Studio fran Start-knappen: Start = Visual Studio 2022

Ett vitt fonster 6ppnas med rubriken Visual Studio 2022. | kolumnen till héger un-
der rubriken Get started finns ett antal rutor.

1. Att skapa eller 6ppna ett befintligt projekt: Beroende pa om vi vill skapa
ett nytt eller 6ppna ett befintligt projekt, tar vi ett av foljande alternativen a) el-
ler b):

a) Om vi vill skapa ett nytt projekt — och det vill vi nu — klickar vi i det vita
Visual Studio 2022-fonstret pa rutan

Create a new project

En ny dialogruta dyker upp med rubriken Create a new project. Scrolla
ned den hdgra kolumnen i dialogrutan Create a new project och leta efter
en ruta med rubriken Console App (.NET Framework) som ser ut s& har:

ﬁ* Console App (NET Framework)

A project for creating a command-line application

C# Windows Console

OBS! Det kan vara lite svart att hitta denna ruta, eftersom det finns manga
alternativ och manga rutor som ser likadana ut. Det &r lattgjort att man
véljer fel ruta. Var extra noga med att du har C# ikonen och den exakta
rubriken:

Console App (.NET Framework)

Och inget annat! Annars kommer vara program inte kunna koras med de
instruktioner som ges i boken. Och da kommer hela installation av Visual
Studio att behdva goras om.

Markera rutan ovan. Klicka sedan pa knappen Next.
En ny dialogruta dyker upp med rubriken Configure your new project.

Fyll i den uppgifterna enligt féljande:

26

b)

Configure your new project

Console App (.NET Framework) ¢ Windows Console

Project name

MyCsConsoleProject

Location

C\C#

Solution name @)

Place solution and project in the same directory

Framework

[.NETFramework 4.7.2 B

Dvs i den 6vre delen av dialogrutan déper vi vart projekt till MyCsCon-
soleProject. | textrutan Location anger vi den fullstdndiga sokvégen till
den mapp vi vill placera vart projekt i. Lt oss sdga vi vill samla vara C#
program i en mapp som vi kallar C# och placerar i enheten C:\ pa var
dator. | sa fall anger vi som Location C:\C#. | denna mapp kommer nu
projektmappen MyCsConsoleProject placeras. Visual Studio skapar auto-
matiskt bade den nya mappen och projektfilen. Bocka for den lilla rutan
Place solution and project in the same directory. Klicka pd knappen Cre-
ate. Ga till punkt 2.

Om vi vill 6ppna ett redan befintligt projekt — det gor vi kanske senare —
klickar vi i det vita Visual Studio 2022-fonstret pa rutan

Open a project or solution

Vi far upp dialogrutan Open Project/Solution. For att 6ppna det projekt vi
vill jobba med, navigerar vi i datorns filsystem till projektmappen och
oppnar dar filen med andelsen . esproj. Ga till punkt 2.

Att 1agga till en C#-kallkodsfil till projektet: Efter att ha l[&mnat dialogru-
tan Configure your new project med Create-knappen enligt 1. a) eller dialog-
rutan Open Project/Solution med Open-knappen enligt 1. b) dppnas projektet.
Ett grafiskt granssnitt kommer upp som liknar en webbsida bestdende av en
massa menyer, flikar, lankar och fonster som ser ut s& har:

27

File Edit View Git Project Build Debug Test Analyze Tools Extensions P MGt — O X
Window Help
H-2B8 Debug - AnyCPU s PhStat-D F- B . WE D R Lliveshae B
g ~ # | Solution Explorer v RXx
g [EMyCsConsoleProject - % MyCsConsoleProject.Program ~ ©5Main(string]] args) - % aflo-s0 "
g 19 =using System; = | Search Solution Explorer (Ctri+ 2 ~
& 2 using System.Collections.Generic; [R Solution 'MyCsConsoleProject’
3 3 |using System.Ling; 4 [MyCsConsoleProject
o =) * 2
[7 eing: Byetem Texts b Properties
wa g Sys . 5 b &8 References
5 using System.Threading.Tasks; &) App.config
6 b c# Program.cs
7 =namespace MyCsConsoleProject
8 |{
9 internal class Program
10 {
11 &= static void Main(string[] args)
12 {
13 }
14 }
15 [}
16
v|[4 >
100% - @ @ No issues found B] » i1 Ch:1 SPC CRLF | | Solution Explorer = Git Changes
Output
[] Ready 1 AddtoSource Control « € SelectRepository « [

Man ser ett antal fonster: till hdger ovan fonstret Solution Explorer dar projek-
tets innehall visas med ett antal automatiskt skapade filer, bl.a. filen Pro-
gram.cs som Vi har markerat i bilden ovan. Till vanster ser man det stora kod-
fonstret som visar denna fils innehall som &r en mall for ett C# program. Den
&r 1amplig for dem som vill anvanda mallen for att snabbt kunna utveckla en
applikation. Vi daremot ska lara oss C# fran grunden och vill inte anvanda kod
som vi inte skrivit sjalva. Darfér: Markera Program.cs, hogerklicka och vélj:

Exclude From Project

Darmed har vi avlagsnat denna fil fran projektet for att kunna infoga vart eget
C# program i projektet. Det finns tva alternativ att gora det: Antingen vill vi
skapa ett helt nytt program, skriva in koden, spara den i en fil och infoga den i
projektet eller vi vill lagga till en redan befintlig fil som innehéller ett C# pro-
gram, som vi kanske har skrivit tidigare. Vi ska behandla bada varianter och
boérjar med den forsta:

a) Att skapa en ny fil och infoga det i projektet:

Markera i Solution Explorer projektnamnet MyCsConsoleProject, hdger-
klicka pa det och valj:
Add > New ltem...

Dialogrutan Add New Item — MyCsConsoleProject dyker upp. Scrolla ner
fonstret i mitten tills du ser filtypen Code File. Markera Code File i mittfon-
stret:

28

Add New Item - MyCsConsoleProject ?
4 Installed Sortby: Default - & [E] Search (Ctrl+E) p-
4 C# It a = - . -~ =
ce':’ Application Manifest File (Windows Only) C# ftems Type: G items
i A blank C# code file
Data o
DI Assembly Information File C# ltems
General
Web
piMe E Bitmap File C# ltems
Windows Forms
WPF
R m Code Analysis Rule Set C# Items
Graphics
&
b Online Code File C# ltems
r: Cursor File C# ltems
-
!: Custom Control (Windows Forms) C# ltems
ai DataSet C# ltems
c#
Debugger Visualizer C# ltems
Name: First.cs
[add][cancel

Ange i den undre delen av dialogrutan i textrutan Name: First.cs. Ddrmed
har du skapat en fil av typ Code File och dopt den till First.cs. Klicka pa
Add-knappen. S snart du gjort det l4ggs den tomma filen First.cs till projek-
tet. Samtidigt skapas denna fil i projektmappen MyCsConsoleProject. Och
nér du i Solution Explorer markerar filen visas till vanster ett stort vitt fonster
som du kan anvénda som en editor for att skriva C#-kod i. Skriv in d&r t.ex.
féljande kod:

using System;

class First

{
static void Main()
{
Console.WriteLine ("\n\tMitt férsta C# program!\n") ;
}
}

Det rekommenderas att bibehalla kodens layout, for att félja God programme-
ringsstil. Visual Studio har stod for detta. Koden kan sparas och lagras t.ex. i
filen First.cs sa snart du kompilerar projektet, se punkt 3. Vi kommer att refe-
rera till den med programmet First som samtidigt &r klassnamnet i koden,
vilket dock inte &r obligatoriskt utan en konvention vi féljer.

b) Att lagga till en befintlig fil till projektet:

Har du redan en C#-kallkodsfil bland dina filer pa harddisken, markera i So-
lution Explorer projektnamnet MyCsConsoleProject, hogerklicka och vélj:

Add - Existing Item...

29

3.

Dialogrutan Add Existing Iltem — MyCsConsoleProject dyker upp som tillater
dig att navigera genom datorns filsystem for att ladda en existerande C#-
kéllkodsfil. Ga till den fil du vill ladda, markera den och klicka pa knappen
Add i dialogrutan Add Existing Item — MyCsConsoleProject. | Solution Explo-
rer kan du konstatera att den fil du valde har kommit till projektet MyCs-
ConsoleProject. Markera den for att se innehdllet i kodfénstret till vanster
som nu kan anvéndas som en editor.

Att kompilera och exekvera: Nu nér projektet ar skapat och innehaller en
C#-kallkodsfil kan man kompilera det vilket innebér att &ven kallkoden ovan
kompileras. Om det inte redan finns ett Output-fonster langst ned pa sidan un-
der kodfonstret, klicka i menyraden langst upp pa menyn:

View = Output

Du far ett nytt Output-fonster for att kunna se resultatet av kompileringen och
aven se eventuella kompileringsfel. Akta pa vad som skrivs i det nar du kom-
pilerar koden fran menyraden langst upp med:

Build - Build Solution
Om du far foljande meddelande i Output-fonstret har kompileringen gatt bra:

1>------ Build started: Project: MyCsConsoleProject, Configuration:
Debug Any CPU ------

1> MyCsConsoleProject ->
C:\C#\MyCsConsoleProject\bin\Debug\MyCsConsoleProject.exe

======== Build: 1 succeeded, © failed, © up-to-date, O skipped =======

Meddelandet ovan, speciellt @ failed, siger att koden inte innehéller nagra
kompileringsfel. Har du syntaxfel i koden kommer du att fa felmeddelanden i
Output-fonstret. Atgarda alltid endast det allra forsta kompileringsfelet och
kompilera om. Ett méjligt kompileringsfel kan vara att du glémt att exkludera
filen Program.cs fran projektet, se sid 28.

For att exekvera koden, klicka i menyraden langst upp pa menyn:
Debug - Start Without Debugging

Om allt har gétt bra bor det se ut sa har pa din skarm:

Press any key to continue . . .

EX C:\WINDOWS\system32\cmd.exe — O X

Mitt foérsta C#-program!

30

1.7 De enkla datatypernai C#

o CIVWINDOWSvsystem32iemd. exe
De enkla datatyperna i C#:

Datatypen bool tar 1
shyte 1
byte 1
char 2
short 2
ushort 2
int 4
uint 4
long 8
ulong 8
float 4
double 8
decimal 16

bool representerar sanningsvardena sant eller
falskt. char lagrar tecken. sbyte, byte,
short, ushort, int, uint, long, ulong ar
enkla datatyper for representation av heltal.
Prefixet u som inleder nagra av dem betyder
unsigned och innebdr att dessa endast kan
lagra positiva heltal, medan prefixet s star for
signed som tillater dven negativa heltal. De
enkla datatyperna float, double, decimal
representerar decimaltal. Alla enkla datatyper i
C# &r reserverade ord. Dar finns &ven det re-
serverade ordet sizeof som anvands for att
méta minnesstorleken av varje datatyp i antal
bytes. 1 byte bestar av 8 bitar dar 1 bit ar den

minnesatom som kan lagra endast en nolla eller en etta. Som man ser har vi ordnat
de enkla datatyperna efter det minnesutrymme som &r tilldelat och forbestamt i
deras definition. Det tillatna vardeomradet ligger inom ett intervall som direkt kan
harledas fran minnesstorleken som varije datatyp har till férfogande.

Egentligen &r programmet PrimitivesCs ur programmeringsteknisk synpunkt
inte sarskilt intressant och bestar av en enda utskriftssats. Vi aterger den anda, inte
minst for att visa hur man anvander operatorn sizeof:

// PrimitivesCs.cs

// Visar alla enkla datatyper i C# och deras minnesstorlekar
// Operatorn sizeof mdter minnesstorleken i antal bytes

using System;

class PrimitivesCs

{

static void Main()

{

Console.WriteLine ("De enkla datatyperna i C#:\n"

"Datatypen bool tar
" sbyte
" byte

" char

" short
" ushort
" int

" uint

" long

" ulong
" float

+

_______________________ \n" +
" + sizeof (bool) + '\n' +
" + sizeof (sbyte) + '\n' +
" + sizeof (byte) + '\n' +
" + sizeof (char) + '\n' +
" + sizeof (short) + '\n' +
" + sizeof(ushort) + '\n' +
" + sizeof(int) + '\n' +
" + sizeof (uint) + '\n' +
" + sizeof (long) + '\n' +
" + sizeof (ulong) + '\n' +
" + sizeof (float) + '\n' +

31

" double " + sizeof (double) + '\n' +
" decimal " 4+ sizeof (decimal) + " bytes\n");

De enkla datatypernas granser

De enkla datatypernas granser som vi egentligen &r ute efter i detta avsnitt, kan nu
latt harledas fran deras minnesstorlekar. Ett exempel ar heltalsdatatypen short
som enligt ovan har 2 bytes dvs 2x8 = 16 bitar till forfogande. Darfor reserverar
varje variabel definierad som short 16 bitar i minnesutrymme. Ett vérde till en
sddan variabel kan alltsé inte lagras i datorn om det Gverstiger det storsta binara tal
som kan lagras i 16 — 1 = 15 bitar. 15 darfor att en bit behdvs for att lagra sjalva tec-
knet + eller — darfor att en short-variabel kan dven anta negativa vérden. Det stor-
sta bindra heltal som kan lagras i 15 bitar bestar av 15 ettor dvs 111 1111 1111 1111.
| det decimala talsystemet blir det 32 767. Darfor ar den positiva gransen for data-
typen short 32 767. P4 samma sitt kan de andra datatypernas granser harledas fran
deras resp. minnesutrymme. Ingen panik! Vi kommer inte att gra det. Dessa gran-
ser ar lagrade i vissa namngivna konstanter. Har skrivs ut dem for alla enkla data-
typer som ett korresultat av programmet Limits pa nasta sida:

Enkla datatypernas grénser:

sbyte finns mellan -128 och 127

byte 0 255

char 0 65535

short -32768 32767

ushort 0 65535

int -2147483648 2147483647

uint 0 4294967295

long -9223372036854775808 9223372036854775807
ulong 0 18446744073709551615
float -3,402823E+38 3,402823E+38

double -1,79769313486232E+308 1,79769313486232E+308
decimal -79228162514264337593543950335 och

79228162514264337593543950335

bool tar endast vidrdena True och False

Till skillnad fran de andra datatyper som kan anta bade positiva och negativa vér-
den, kan de teckenldsa datatyperna (u = unsigned dvs utan tecken + eller -)
endast anta positiva varden: De heter s& darfor att deras véarden varken behdver ha
plus- eller minustecknet framfor talet. Dessa enkla datatyper har precis lika mycket
minnesutrymme till férfogande som sina motsvarande vanliga datatyper med tec-
ken. Detta innebér att nddvéandigheten att lagra tecknet faller bort hos unsigned-
typerna. Om vi resonerar vidare i exemplet med short skulle datatypen ushort
ha alla 16 bitar till férfogande for sjalva positiva heltalet. Det storsta binédra heltal
som kan lagras i 16 bitar bestar av 16 ettor dvs 1111 1111 1111 1111. | det decimala
talsystemet blir detta 65 535. Darfor ar gransen for datatypen ushort dubbelt sa

32

stort (fast +1 pga nollan) som for short. Och sd ar det med alla unsigned-typer:
deras granser ar dubbelt sa stora fast de har lika stort minnesutrymme till férfogan-
de, darfor att de inte behdver lagra tecknet och dérmed har 1 bit mer for att lagra
sjalva positiva heltalet. Av samma anledning har byte en dubbelt si stor évre
grans som sbyte fast bada tar endast 1 byte minne. Decimaltalstyperna £1oat och
double:s granser visas i utskriften ovan i s.k. Exponentiellt format, &ven kallat
grundpotensform (eng.: Scientific notation) vilket innebér att t.ex. £1oat:s positiva
grans 3.4028235E38 ar lika med 3,4028235 ganger 10 upphojt till 38 dvs

3,4028235.10% .

// Limits.cs

// Visar enkla datatypernas grdnser som &r lagrade 1
// konstanter definierade i datatypklasserna

using System;

class Limits

{
static void Main()

Console.WritelLine ("Enkla datatypernas grédnser:\n" +
W e e e \I‘l" +
"sbyte finns mellan " + sbyte.MinValue +
" och "+ sbyte.MaxValue +
"\nbyte "o+ byte.MinValue +
" "o+ byte.MaxValue +
"\nchar " + (int) char.MinValue +
" " 4+ (int) har.MaxValue +
"\nshort " + short.MinValue +
" " + short.MaxValue +
"\nushort " + ushort.MinValue +
" " + ushort.MaxValue +
"\nint " 4+ int.MinValue +
" " + int.MaxValue +
"\nuint " 4+ uint.MinValue +
" " 4+ wuint.MaxValue +
"\nlong " + long.MinValue +
" " + long.MaxValue +
"\nulong " + ulong.MinValue +
" " + ulong.MaxValue +
"\nfloat " + float.MinValue +
" " + float.MaxValue +
"\ndouble " + double.MinValue +
" " + double.MaxValue +
"\n\ndecimal\t " + decimal.MinValue +
" och \n\t\t u + decimal.MaxValue +
"\n\nbool tar endast vidrdena " + true +

W och " 4+ false + '\mn');

}
}

33

1.8 Inladsning av data

Vara C# program har hittills bara haft utdata, inga indata. Det var utdata som
skrevs ut fran programmet till bildskarmen, narmare bestamt med metoden write-
Line () till konsolen. Men hur gér man nér man vill skicka indata till ett program?
Féljande program visar hur man kan gora det med metoden ReadLine () :

/* InputCs.cs
Programmet f&6r en dialog med anvidndaren, ldser in text med
ReadLine () som sedan skrivs ut. Inldsningen féregas av en
ledtext fér att instruera anvdndaren. ReadlLine() dr en me-
tod definierad i klassen Console och returnerar den inma-
tade strdngen som lagras 1 variabler av typ string.

7

using System;

class InputCs

{
static void Main ()
{
string name, course; // Datatypen string
Console.Write ("\n\tVad heter du?\t\t"); // Ledtext
name = Console.ReadLine() ; // 1l:a inldsning
Console.Write ("\n\tHej pa dig, " + name + ',' +
"\n\tvilken kurs liser du? ")
course = Console.ReadLine() ; // 2:a inldsning
Console.WriteLine ("\n\tVilkommen till " + course +
"-kursen'!\n") ;
}
}

Programmet ovan producerar en dialog i tva delar. Den forsta fragar efter name, la-
ser in det och ger svar, efter att anvandaren matat in ett namn och tryckt pa Enter.
Den andra delen gor samma sak med inlasning av course:

Vad heter du? Peter

Hej pa dig, Peter,
vilken kurs ladser du? c#

Valkommen till C#-kursen!

Data som matas in fran tangentbordet eller lases in fran filer, ar indata. Till skillnad
frén utdata som inte behéver mellanlagras, maste indata lagras i minnet. Bade inda-
ta och programkod maste lagras i RAM-minnet. Programkoden laddas fran héarddis-
ken till RAM-minnet ndar maskinkoden i den exekverbara filen kors. Indata dédremot
maste matas in under programmkorning och mellanlagras i en minnescell i RAM-

34

minnet innan den kan vidarebearbetas av programmet. Mjukvaruméssigt innebar
detta att indata maste tas emot och lagras i en variabel — ytterligare ett skal till att
variabeln maste vara definierad, dvs vara associerad med en minnescell av en viss
storlek som &r reserverad i datorns RAM-minne. Variabelns namn blir en referens
till minnesadressen som sedan kan anvéndas for att komma at data. Medan alloke-
ringen av minnesutrymme i regel sker under kompilering via variabeldefinition,
maste inmatningen goras under exekveringen. Darfor avbryts exekveringen nar en
inmatning ska ske. I koden fororsakas detta tempordra avbrott av anropet av meto-
den ReadLine () som vi ska nu forklara ndrmare.

Metoden ReadLine ()

Vad metoden gor kan vi se nar programmet InputCs exekveras: Forsta gangen
anropas metoden i satsen

name = Console.ReadLine () ;

Anropet sker med punktnotation eftersom metoden ReadLine () ar definierad i
klassen console. Men varfor bakas metodens anrop in i en tilldelningssats: name
= ...? S4éar det inte med utskriftsmetoden WriteLine (). Dess anrop star fritt i
en sjalvstandig sats. Detta beror pa att writeLine () l4ser in data som maste lag-
ras for att vidarebearbetas. Denna lagring gors i en variabel, i exemplet ovan i
variabeln name som tar emot och lagrar den inmatade texten. Vi har i ReadLine ()
for forsta gangen att géra med en metod som returnerar ett varde, det s.k. retur-
vardet. ReadLine () ar en metod med returvarde. Sddana metoder kan man jam-
fora med en Iada i vilken man stoppar in parametrar och far ut ett returvérde:

Parametrar ~——— Metod ——= Returvéarde

ReadLine () har ingen parameter och returnerar en strang, namligen den av an-
vandaren inmatade texten. Denna strang hamnar i variabeln name nér anvandaren
trycker pa Enter. Darfor star anropet i en tilldelningssats, just for att ta hand om
den returnerade strangen (returvérdet). Att en strang dvs vanlig text kallas har for
returvarde ar inte nagot anmarkningsvart. All form av data betecknas som varde
som lagras i form av en sekvens av ettor och nollor i en minnescell.

For ett korrekt anrop av en fordefinierad metod &r det dessutom avgérande att veta
vilka datatyper metodens parametrar och returvarde har. Dessa ar namligen ocksa
fordefinierade och kan inte valjas fritt. Vi maste deklarera variabeln som lagrar re-
turvérdet med just den datatyp som metoden foreskriver for sitt returvéarde. Faktum
ar att returvardet till ReadLine () ar av datatypen string. Allts3, for att lagra re-
turvérdet i variabeln name och sedan course maste dessa variabler deklareras till
datatypen string.

35

Metoden int.Parse ()

Hade string-variabeln name i programmet InputCs varit t.ex. number och des-
sutom av datatypen int istéllet, hade vi behdvt att lasa in den sa har:

int number;

Console.Write("\n\tMata in ett heltal:\t"); // Ledtext
number = int.Parse (Console.ReadLine()) ; // Inldsning
// och omvandling till int

Vi vet ju att returtypen av metoden ReadLine () dr string. FOr att kunna l&sa in
dven heltal maste vi omvandla returtypen till int. Just detta gor den fordefinierade
metoden int.Parse () at 0ss. Den tar emot i sin parentes en parameter som ar av
typ string, omvandlar den till heltal och returnerar den som en int.

Satsen number = int.Parse(...);

utfér denna omvandling och lagrar resultatet i variabeln number som &r deklarerad
som int. Aven har dr anropet av metoden int.Parse () inbakat i en tilldelnings-
sats for att ta hand om metodens returvérde. De tre punkterna . . . &r i sin tur retur-
vardet till metoden ReadLine () SOM 4r string. | sjalva verket star till hdger om
tilldelningstecknet i satsen ovan ett s.k. nastlat anrop av de tvd metoderna Read-
Line () och int.Parse (). Observera att nastlade anrop av tva (flera) metoder
sker alltid inifran.

Villkorlig initiering

Aven om man i C# har tagit 6ver kontrollstrukturers syntax fran C++ férekommer
sma skillnader. En av dem ér villkorlig initiering av variabler som inte far goras i
C#, men ar tilldten i C++. Det handlar inte om kontrollstrukturers syntax utan om
behandlingen av variabler dar C# har en striktare policy &n C++ som syftar at mer
stabilitet av koden. Variabler deklarerade till enkla datatyper i en metod — och detta
géller forstas dven for Main () -metoden — maste initieras innan (om) de anvands. |
c# far initieringen inte vara villkorlig dvs std i en i£-sats. Narmare bestamt far ini-
tieringen inte skrivas i kroppen till en i £-sats vars villkor involverar variabler. Det-
ta galler oavsett villkorets sanningsvarde. Aven om villkoret &r sant kan koden inte
kompileras om variabeln initieras i i£-satsen och villkoret &r formulerat med varia-
bler. | foljande program stér initieringen av variabeln l1etter i en if-sats och ar
darmed beroende av if-satsens villkor i vilket variabeln i &r involverad. Darfor
kan koden inte kompileras fast villkoret i == 0 &r pga i:s initiering sant:

36

// CondInit.cs // Kan ej kompileras
// Ger kompileringsfel pga villkorlig initiering av variabeln
// tecken i if-satsen

using System;

class CondInit

{
static void Main()
{
char letter;
int i = 0;
if (i == 0)
letter = 'a'; // Villkorlig initiering
Console.Writeline (letter) ;
}
}

Kompilatorn genererar felmeddelandet: Use of unassigned local variable 'letter’
Dvs C#-kompilatorn anser variabeln 1etter som icke-tilldelad. Samma felmedde-
lande far man om man missar att tilldela en variabel. Problemets ldsning &r att helt
och hallet koppla bort tilldelningen fran villkoret och skriva den fristaende:

// UncondInit.cs // Kan kompileras
using System;

class UncondInit

{

static void Main ()

{

char letter;
int i = 0;

// if (1 == 0)
letter = 'a'; // Ovillkorlig initiering

Console.WriteLine("\n " +
"Nu nar if ar bortkommenterad ar variabeln letter " +
"initierad\ntill " letter + "\n utan villkor'\n");

}

Istallet for kompileringsfel far vi nu foljande utskrift nar vi kor:

Nu ndr if a4r bortkommenterad &r variabeln letter initierad
till a
utan villkor!

37

| programmet UncondInit &r initieringen av letter helt oberoende av nagot vill-
kor. Raden som inleder i£ och darmed hela i£-satsen &r bortkommenterad. Aven
om initieringen av letter fortfarande star indragen, &r den en fristaende sats utan
villkor.

Anmarkningsvart ar att programmet CondInit skulle kunna kompileras om man
byter ut if£-satsens huvud mot if (1 == 1) eller if (true) dvs om endast kon-
stanter dr involverade i villkoret. Endast ’variabelt’ formulerade villkorliga ini-
tieringar satter C#-kompilatorn stopp for. Darfor maste regeln om villkorlig initie-
ring formuleras s har:

Variabler vars initiering @r beroende av icke-konstanta villkor leder
i C# till kompileringsfel.

i == 1 &r ett icke-konstant villkor, darfor att dess sanningsvérde &r beroende av va-
riabeln i:s vérde.

Forbudet mot villkorlig initiering &r inte begrénsad till i£-satser utan géller &ven i
andra kontrollstrukturer dar villkor &r inblandade.

Villkorlig return-sats
Aven i metoder med returvarde far metodens return-sats inte st villkorligt, vare
sig villkoret tillhor en i£-sats eller en loop. | sadana fall ger C# kompilatorn féljan-
de felmeddelande:

... not all code paths return a value.”

Dvs: Inte alla teoretiskt mojliga alternativ i koden returnerar ett vérde. Och det gar
inte eftersom din metods huvud &r definierat med en returtyp int, char, float,
double, string, ... istillet for void. Du maste infoga return-satser i kodens
alla teoretiskt mojliga alternativ, &ven om det sker rent formellt. Observera att tom-
Ma return-satser av typ return; inte ar tillatna i C# — till skillnad fran C++.

Férbuden mot villkorliga i£- och return-satser har inforts i C# for att gdra pro-

grammen mer stabila och tillforlitliga, sa att de med en sa liten arbetsinsats som
majligt kan vidareutvecklas till senare versioner.

38

1.9 Collatz algoritmen

Lothar Collatz (1910-1990) var professor for tillimpad matematik vid Hamburgs
Universitet pa 60-talet. Som ung student stallde han upp féljande uppgift:

" Tink dig ett positivt heltal (startvirde). Ar talet udda
multiplicera det med 3 och addera 1. Ar talet jamnt
dividera det med 2. GOr samma sak med resultatet.
Fortsditt tills du fatt 1.

Det visar sig att talféljderna i denna algoritm, &ven kand som Collatz-férmodan el-
ler (3n+1)-problemet, alltid slutar med 1 oavsett startvarde. Dock ar detta pastaende
matematiskt hittills obevisat *. Sa har ser flodesschemat ut for denna algoritm:

Flodesschemat till Collatz algoritmen

| Ta ett positivt heltal |

Heltalet
udda?

Heltal / 2 Heltal * 3 + 1

nej

* Man kan testa Collatz algoritmen i appen Mattekollen dér den ar kodad i Python. Ladda
ned appen eller kér den som Webbapp: app.mattekollen.se = En mobil pythonmiljé. El-
ler kor den direkt som webbapp: beta.mattekollen.se/#/app/coding. Prova koden med olika
startvarden for att kolla om algoritmens talféljder alltid slutar med 1.

39

http://beta.mattekollen.se/#/app/coding

Flédesschemat visualiserar algoritmens logisla struktur som &r grundldggande. Men
for att koda kan det vara fordelaktigt att formulera algoritmen &ven som pseudokod
som ligger ndarmare programkoden &n flédesschemat.

Pseudokoden till Collatz algoritmen

Las in ett positivt heltal
SR LANGE talet # 1 REPETERA:
OM talet ar udda
multiplicera med 3, addera 1
ANNARS
dividera talet med 2
Skriv ut talet

Som man ser har vi redan anpassat texten i pseudokoden till programmering, t.ex.
med formuleringar som L&s in ... och Skriv ut | fdljande program
inplementerar vi Collatz algoritmen:

// Collatz.cs

// Ldser in ett positivt heltal och tar det ganger 3 + 1 om
// det &r udda, annars delar det med 2, tills det blir 1
using System;

class Collatz

{
static void Main()
{
Console.Write ("\n\tMata in ett positivt heltal:\t";
int number = int.Parse (Console.ReadLine()) ;
Console.Write ("\n" + number); // Startvirde
while (number '= 1) // Saldnge talet inte &r 1
{
if (number % 2 == 1) // Om talet &dr udda, gdngra
number = 3 * number + 1; // det med 3 och addera 1
else // Om talet &dr jamnt,
number = number / 2; // dela med 2
Console.Write("\t" + number) ;
}
Console.WriteLine ("\n") ;
}
}

| foljande korexempel matas in ett tresiffrigt startvarde. Du kan forsoka med andra.

40

Mata in ett positivt heltal: 135

135 406 203 610 305 916 458 229
688 344 172 86 43 130 65 196
98 49 148 74 37 112 56 28
14 7 22 11 34 17 52 26
13 40 20 10 5 16 8 4

2 1

Metoder och program i C# l

De flesta kénner till begreppet funk-

tion fran matematiken. Dar kan en Main () ':‘ Method
funktion t.ex. beskrivas med en for-

mel y = f(X) som berédknar ett varde y l

utgdende frén ett annat vérde x. Aven

i programmering finns den matematiska synen pa funktion som underliggande kon-
cept och historisk utgangspunkt. Men under tiden har den fatt en bredare tolkning
da den tillampats pa all datoriserad problemlésning.

En metod ar en funktion som definieras i en klass. | objektorienterade programme-
ringssprak ar metoder inkapslade i klasser. | C# ar detta obligatoriskt. Darfor finns
det i C# till skillnad frdn C++ inga fristdende funktioner. Bortser man fran denna
overordnade struktur och ser pa det "inifran”, ar funktioner och metoder identiska.

En metod i C# ar en namngiven kodmodul (ett antal satser) i en klass
som utfors nar metoden anropas. Vid anropet kan den ta emot indata,
s.k. parametrar, bearbeta dem och returnera utdata, s.k. returvarde.

Som “ett antal satser” dr en metod en del av en klass som isoleras och skrivs sepa-
rat som en anropbar modul for att kunna anvéndas dven i andra klasser. Man kan
jamfora en metod med en “svart 14da” i vilken man stoppar in indata och far ut ut-
data: Indata kallas aven parametrar och utdata returvarde:

Parametrar (indata) ——— Metod +——= Returvérde (utdata)

En metod kan ha 0, 1 eller flera parametrar. Den kan ha 0 eller 1 returvérde. En
metod kan alltsé inte ha flera returvarden. Bade parametrarna och returvardet kan
vara tal, tecken, strangar, sanningsvérden eller referenser till objekt. Metoden bear-
betar de ev. inkommande parametrarna pa ett visst sétt och returnerar ev. ett varde.

41

Det finns metoder med och s&dana utan returvirde. De senaste kallas for void-
metoder.

Vi har hittills anvant nagra C#-biblioteksmetoder, t.ex. Console.Write (), Con-
sole.WriteLine (), Console.Read(), Console.ReadLine(), int.Par-
se (), ... utan att behova veta hur de var kodade, darfor: ”svarta 1addor”. De var
forprogrammerade at oss och vi anvande dem bara for att astadkomma vissa funk-
tionaliteter. | detta avsnitt ska vi nu lara oss att sjalva skriva metoder. Men en me-
tod som vi redan har skrivit sjalva — och det har vi gjort i alla vara programexem-
pel — ar metoden Main (), for den ar obligatorisk. S& har definieras C# program:

Ett C# program ar en samling av klasser, av vilka en och endast
en maste innehdlla metoden Main ().

Nar programmet kors startar exekveringen i Main ().

Modularisering av Collatz

Har vill vi modularisera programmet collatz pa sid 40. Dvs vi vill separera en
del av koden som kédnns meningsfullt att isolera och skriva den i en metod. Vilken
del det ska vara &r inte sjalvklart. Nedan ser du ett forslag for ett sadant beslut:

// Collatz mod.cs

// Deklarerar klassen Collatz mod och definierar i
// den metoden Collatz som utfér Collatz algoritmen
using System;

class Collatz_mod

{
public static void Collatz (int n) // n formell parameter
while (n !'= 1) // Sa& ldnge talet inte &r 1
{
if (n % 2 == 1) // Om talet dr udda gdngra
n=3%n+ 1; // det med 3 och addera 1
else // Om talet &r jamnt,
n=n/2; // dela med 2
Console.Write ("\t" + n);
}
}
}

Som man ser har vi isolerat algoritmens kérna som utgor sjalva logiken i det hela,
dvs det som Collatz algoritmen vasentligen innehaller och Iatit alla andra tekniska
detaljerna vara utanfor, t.ex. inlasningen av startvardet, utformningen av utskriften
osv. Alla dessa delar stannar kvar i metoden Main () som anropar metoden Col-
latz () exakt pd samma stille som koden for Collatz algoritmen stod. Nedan ser
vi dessa delar:

42

// Collatz Test.cs

// Ldser in ett positivt heltal number och anropar
// metoden Collatz i klassen Collatz mod som tar in
// number som parameter och utfér Collatz algoritmen
using System;

class Collatz_Test

{
static void Main ()
{
Console.Write ("\n\tMata in ett positivt heltal:\t");
int number = int.Parse (Console.ReadLine()) ;
Console.Write ("\n" + number) ; // Startvirde
Collatz_mod.Collatz (number) ; // Anrop av metoden
// Collatz med aktuell
// parameter number
Console.WriteLine ("\n") ;
}
}

Det modulatiserade programmet ovan producerar samma utskrift som det ur-
sprungliga programmet Collatz pa sid 41. Bara att ”det modulatiserade program-
met” till skillnad fran tidigare nu bestar av tva klasser, lagrade i tva filer: co1-
latz_mod.cs OCh Collatz_Test.cs. Darfor maste bada filerna laddas i samma
projekt i Visual Studio ndar man kér programmet. Annars kan den avgérande satsen

Collatz_mod.Collatz (number) ;

dvs anropet av metoden collatz () inte hitta klassen collatz_mod som innehal-
ler metodens definition. Vi har ju separerat den frdn Main (). Den star i en annan
klass som i sin tur finns i en annan fil. Bada filer utgor ett program och darmed
ocksa ett projekt i Visual Studio. Det ar ju just meningen med modularisering. Nu
kan man anropa metoden Collatz () dven fran alla andra program som man ev.
skriver, dven fran sadana som andra skulle skriva. Metoden collatz () har blivit
en generell modul som alla utvecklare kan anvénda sig av.

43

1.10 Algoritm for platsbyte

L&t oss anta vi har tvé tecken charl och char2 som vi vill byta pltas pé. For att
kunna gora det behdvs en tredje, temporér plats. Vi borjar med att ldgga undan
charl pa den temporara platsen temp (steg 1). Sedan byter vi plats pd char2 och
lagger det i charl som tdmdes i steg 1 (steg 2). Och slutligen, i steg 3, lagger vi
char1 som under tiden mellanlagrats i temp, in i char2 som tdmdes i steg 2:

1

charl char2 temp

Illustrationen ovan ar en grafisk beskrivning av algoritmen déar 1, 2 och 3 anger
ordningen i den. Den tredje platsen temp, behdvs, for att tempordrt l1&gga undan det
felplacerade tecknet. | foljande program inplementerar vi algoritmen ovan:

// MiniSort.cs

// Ldser in 2 tecken och sorterar dem i teckentabellens ord-
// ning med hjdlp av en algoritm fOr platsbhyte av tva objekt
using System;

class MiniSort

{
static void Main ()
{
char charl, char2, temp;
Console.Write ("\n\tTva osorterade tecken:\n\n\t" +
"Mata in tva tecken skilda med mellanslag:\t");
string text = Console.ReadLine() ;
charl = text[0]; // Férsta tecknet tas ut
char2 = text[2]; // Andra tecknet tas ut
if (charl > char2?) // tecknens ASCII-koder jamférs
{
temp = charl; // Algoritm fér platsbyte
charl = char2; // av tva tecken
char2 = temp;
}
Console.WriteLine ("\n\tDe tva tecknen sorterade:\t\t\t"
+ charl + ' ' + char2 + "\n");
}
}

| foljande korexempel byts plats pd de inmatade tecknen z och a som har blivit in-
matade i fel ordning. De sorteras enligt teckentabellens ordning:

44

Tva osorterade tecken:
Mata in tva tecken skilda med mellanslag: Z A

De tva tecknen sorterade: A Z

Algoritmens kérna ligger i i£-satsen med sina tre satser. | den forsta satsen lagger
vi undan chari:s vérde i temp (Steg 1 i bilden ovan). | den andra satsen byter vi
plats pd char2:s vérde och lagger det i charl (steg 2). Och slutligen laggs temp
som under tiden har mellanlagrat char1:s vérde, in i char2 (steg 3). Platshytet pa
charl och char2 dger endast rum om de inmatade teckenvérdena &r felplacerade
dvs endast om charl > char2. Annars behaller de sina platser.

I korexemplet ovan jamfor if-satsens villkor charl > char2 vdrdena z och A
med varandra. Men tecken kan inte séttas i en relation av typ “’storre &n” till varan-
dra. | sjalva verket &r det Unicode-koderna till z och a som jdmfors med varandra.
Det ar endast tal som kan jamféras med varandra. Jamférelseoperatorn > behandlar
char-variablerna charl och char2 som tal precis som aritmetiska operatorer gor.

Forsok att modularisera MiniSort

| programmet MiniSort (sid 44) lyckades vi att implementera algoritmen som kan
anvandas for att sortera aven storre datamangder, eftersom en sadan algoritm byg-
ger pa sortering av tva objekt. Men for att kunna gora det maste vi separera den
fran det aktuella program som vi testade algoritmen i, dvs vi maste modularisera
den och skriva den som en separat metod. Detta ska vi forsoka géra nu. Sa har
skulle en sddan metod se ut, nar vi separerar koden som utgér algoritmen fran Mi-
niSort. P4 engelska kallas denna algoritm for Swap eller Swapping.

// NoSort.cs
// Klass med metoden TrySwap () som tar in 2 tecken tl och t2
// och byter plats pa dem enligt algoritmen MiniSort (sid 44)

class NoSort

public static void TrySwap (char tl, char t2)

{
char temp;
if (t1 > t2)
{
temp = tl1; // Algoritm fér platsbyte
tl = t2; // av de tva tecknen
t2 = temp; // tl och t2
}
}

45

Algoritmdelen av MiniSort (sid 44) har flyttats till en metod dar t1 och t2 &r for-
mella parametrar”. Sa kallas parametrar som skrivs i en metods definition till skill-
nad fran de aktuella parametrar som skrivs i metodens anrop. Metoden TrysSwap
anropas i foljande program med de aktuella parametrarna charl och char2:

// NoSortTest.cs

// Ldser in 2 tecken charl och char2, skickar dem till meto-
// den TrySwap() i klassen NoSort som ska sortera dem

using System;

class NoSortTest

{
static void Main()
{
char charl, char2;
Console.Write ("\n\tTva osorterade tecken:\n\n\t" +
"Mata in tva tecken skilda med mellanslag:\t") ;
string text = Console.ReadLine() ;
charl = text[0]; // Férsta tecknet tas ut
char2 = text[2]; // Andra tecknet tas ut
NoSort.TrySwap (charl, char2); // Metodanrop
Console.WriteLine ("\n\tDe tva tecknen sorterade:\t\t\t"
+ charl + ' ' + char2 + '\n');
}
}

Att vi kallar klassen som definierar metoden TrySwap for NoSort forstar man nar
man testkor programmet NoSortTest. Koden kan bade kompileras och exekveras.
Det finns inget syntax- eller annat fel i programmet. Det &r bara att ingen sortering
sker. Tecknen forblir osorterade. Matar man in dem i fel ordning skrivs de ut &ven i
fel ordning — till skillnad fran programmet MiniSort.

Féljande kdrexempel visar att programmet inte gor som vi vill:

Tvad osorterade tecken:
Mata in tva tecken skilda med mellanslag: Z A

De tva tecknen sorterade: Z A

Testa garna sjalv. Och om du tror att det beror pa att de formella parametrarna t1
och t2 i metoden Tryswap har andra namn &n de aktuella charl och char2 i pro-
grammet NoSortTest prova garna att valja samma namn i bada. Det ar inte fel ur

s

Andra beteckningar som férekommer i litteraturen &r anropsparametrar eller argument.
Speciellt argument anvands ofta som &r en inkord matematisk term: T.ex. ar V3 ett anrop av
funktionen f(x) = Vx dar x ar — i matematiska termer — variabeln och 3 argumentet. | pro-
grammeringen brukar vi kalla x fér den formella och 3 fér den aktuella parametern.

46

varken kompilerings- eller exekveringssynpunkt. Bara att det inte hjalper att sorte-
ra tecknen.

Felet ar ett tanke- resp. ett kunskapsfel, om man nu kan beteckna det sa. Vi har
namligen inte tillrackliga kunskaper for att forstd vad som hander nar man modula-
riserar, dvs separerar kod och lagger den i tva olika moduler. Narmare bestamt vet
vi inte exakt hur parametrarna dverfors fran den ena till den andra modulen. Darfor
behandlar vi i nasta avsnitt denna fraga. Det finns namligen inte bara i C# utan i al-
la programmeringssprak olika mekanismer for 6verforing av parametrar mellan en
metods definition och dess anrop. Avgérande for valet mellan dessa mekanismer ar
parametrarnas datatyper. Vi kommer att precisera detta i nasta avsnitt.

a7

1.11 Parameteroverforing i metoder

I det har avsnittet ska vi lara oss pa vilket sétt parametrar 6verfors mellan metoder.
Det finns som sagt olika typer for parameteréverforing. En av dem &r vardeanrop
(Call by Value) som demonstreras i foljande program. En annan heter referens-
anrop (Call by reference) och tas upp efterat.

Vardeanrop (Call by value)

// CallByVal.cs

// Demonstrerar Vidrdeanrop: Vid metodanrop 6verférs VARDENA
// De formella parametrarna (kopior) é&ndras 1 metoden

// Andringen pdverkar inte aktuella parametrarna (originalen)
using System;

class CallByVal

{

static void Main()

{

int hour = 5, min = 35, sec = 49;

Console.WriteLine ("\nI Main() FORE anrop av metod:\ttim="
+ hour + ", min=" + min + ", sec=" + sec);

int total = totalsek (hour, min, sec); // Anrop av metod:
// De aktuella pa-
// raparametrarnas
// VARDEN skickas
Console.WriteLine ("\nI Main() EFTER anrop av metod:" +
"\ttim=" + hour + ", min=" + min + ", sec=" + sec +
"\n\t\t\t\tger " + total + " sekunder totalt." +
"\nVARDEANROP: \n\nAndringen av" + " de formella " +
"parametrarna (kopior)\npaverkar inte de " +
"aktuella parametrarna (originalen).\n") ;

/***/
static int totalsek(int t, int m, int s)

{
Console.WriteLine ("\n\tI metoden FORE &ndringen:\n\tt=" +
t+ ", m=" +m+ ", s=" + s);
int resultat = 3600 * £t + 60 * m + s;
t=m=s=0; // Andring av formella

// parametrar
Console.WriteLine ("\n\tI metoden EFTER &ndringen:\n\tt="
+t+ ", m="+m+ ", s=" + s);
return resultat;

/***/

}

48

Varfor har vi valt andra namn for de aktuella hour, min, sec dn for de formella
parametrarna t, m, s fast de lagrar samma véarden? Béada representerar timmar,
minuter och sekunder. Fragan &r: Lagras dessa varden i 3 eller 6 minnesceller? Om
det ar 3 vore valet av.samma namn motiverat, darfor att de lagrar samma vérden.
Men om det &r 6 vore det battre att aterspegla verkligheten &ven i koden genom att
valja olika namn for de aktuella an for de formella parametrarna.

| exemplet ovan lases in de i Main (). De formella parametrarna — i vart exempel
t, m, s — maste alltid vara variabler som definieras i metoden totalsek () :s pa-
rameterlista nar denna skapas. Sina varden féar de forsta gdngen inte tilldelade i me-
todens kropp utan fran de aktuella parametrarna vid metodens anrop. Sedan &ndras
deras varden i metoden: De sétts allihop till 0 for att testa vilken paverkan denna
andring har pa de formella parametrarna. Men for att anda kunna fé resultatet med
de ursprungliga vardena berdknas antalet totalsekunder och sparas undan i varia-
beln resultat som slutligen returneras fran metoden. Innan dess skrivs ut vérden
som andrats till 0.

| Main () skriver vi ut de aktuella parametrarnas vérden fore och efter anropet av
metoden for att se om de formella parametrarnas andring i metoden paverkar de
aktuella parametrarna. Foljande kdrexempel visar att detta inte &r fallet:

I Main() FORE anrop av metod: hour=5, min=35, sec=49

I metoden FORE &dndringen:
t=5, m=35, s=49

I metoden EFTER &ndringen:
t=0, m=0, s=0

I Main() EFTER anrop av metod: hour=5, min=35, sec=49
ger 20149 sekunder totalt.
VARDEANROP :

Andringen av de formella parametrarna (kopior)
paverkar inte de aktuella parametrarna (originalen).

Korexemplet visar att de formella och aktuella parametrarna har var sitt eget liv.
Det enda som relaterar dem till varandra ar att de tar dver vardena fran varandra.
Andringen av de formella parametrarna paverkar inte alls de aktuella parametrar-
na. Av detta kan man dra slutsatsen att hour, min, sec och t, m, s &r tvd olika
uppséttnigar variabler. De lagras i 6 olika minnesceller. Aven om vi skulle vélja
samma namn for dem — vilket vore tillatet da de ligger i tva olika metoder och
darmed i tva olika block — kommer namnen fortfarande beteckna 6 olika minnes-
celler. Aven om beteckning &r av sekundar betydelse vill vi i fortsattningen vilja
andra namn for de aktuella an for de formella parametrarna for att aterspegla den-
na verklighet. Kodens lasare ska inte luras som om de vore samma variabler pga
namnvalet.

49

En annan slutsats av kdrningen ovan ar: Parameteréverforingen mellan metoderna
totalsek () och Main () realiseras genom kopiering av vérdena fran de aktuella
till de formella parametrarna. Denna parameterdverforingsmetod kallas véardean-
rop darfor att det &r sjalva varden som kopieras 6ver ndr metoden aropas. Min-
nesbilden av vardeanrop ser ut sa har:

Vardeanropets minnesbild:

Kopiering
hour 5 vE50 t
min 35 350 m
sec 49 4/9 0 s

Andring av kopiorna, de formella parametrarna t, m, s paverkar
inte originalen, de aktuella parametrarna hour, min, sec.

Vid denna parameterdverforingsmetod skapas alltid en dubbel uppséttning av min-
nesceller: 6 om vi har 3 parametrar. Darfor leder vardeanrop oundvikligen till for-
dubblad minnesétgang. Datatypen till respektive parameter ar avgorande for den
automatiska tillampningen av vardeanrop. Det géaller foljande regel:

I C# valjs automatiskt vardeanrop (Call by Value) for parameter-
Overforing vid metodanrop, om parametern ar av enkel datatyp.

Fordubblingen av minnesatgangen anses inte som ett stort problem eftersom enkla
datatyper i alla fall tar upp relativt litet minnesutrymme. For datatyper som kréver
stérre minnesutrymme anvands en annan teknik som undviker denna férdubbling
och som heter referensanrop.

Ur minnessynpunkt ar forstas fordubblingen av minnesétgéngen en nackdel. Men
vardeanrop har dven fordelen att just pga minnesbilden ovan de formella och de
aktuella parametrarna har var sitt liv och inte paverkar varandra. | vissa samman-
hang &r detta 6nskvart, i andra inte. S3, beroende pé& applikationen kan man vilja
bland de tva parameteréverforingsmetoderna varde- och referensanrop genom att
valja ratt datatyp till sina parametrar. Enkel datatyp leder automatiskt till varde-
anrop. Vilken datatyp som automatiskt leder till referensanrop ska vi ta upp pa de
foljande sidorna.

Referensanrop (Call by reference)

Véardeanrop anvander sig av kopiering av parametervérdena till nya minnesceller
och tillampas nér parametrarna &r enkla datatyper. Nackdelen med vérdeanrop ar

50

att den medfor fordubbling av minnesatgangen. Alternativet till det ar referensan-
rop som dverfér minnesadressen istéllet for vardet och dar man slipper denna nack-
del. Referensanrop &r relaterad till datatypen referens som behandlades tidigare va-
rifrdn ocksd namnet harstammar. Anledningen &r att parametrarnas datatyp auto-
matiskt styr valet av dverforingsmetoden. Det galler ndmligen:

I C# valjs automatiskt referensanrop (Call by reference) for parameter-
overforing vid metodanrop, om parametern ar av datatypen referens.

Samtidigt kommer vi att se att det for vissa problem t.o.m. dr nddvéandigt att anvén-
da referensanrop dé det inte gér att modularisersa dem med vérdeanrop. Man vill
t.ex. skicka vissa parametrar till en metod dar de andras och man vill fa tillbaka
andringen till huvudprogrammet. Som exempel tar vi:

Modularisering av MiniSort

Pa sid 46 lyckades vi inte att modularisera MiniSort (sid 44). Det berodde pa att
metoden vi skrev tillampade vardeanrop pga att dess parametrar var deklarerade till
den enkla datatypen char. Andringen av de formella parametrarna t1 och £2 i me-
toden Tryswap (kopior) paverkade inte de aktuella parametrarna charl och
char2 (originalen). De forblev oférandrade, se vardeanropets minnesbild (sid 50).
Det var ju de som vi skrev ut i Main () dar vi anropade metoden. Vi skrev alltsa ut
charl och char2 som inte var &ndrade, medan vi aldrig skrev ut £1 och 2 som
var andrade. Vill vi ha dndringen kvar i Main () maste vi anvanda referensanrop
genom att deklarera vara parametrar till datatypen ref char, se referensanropets
regel ovan. Det gor vi nu:

// Swapping.cs

// Klass med metoden Swap () som tar in 2 tecken och byter
// plats pd dem om de dr i fel ordning enligt teckentabellen
// De ombytta parametrarna i1 Swap () blir dven ombytta i den
// anropande metoden pga parametrarna &dr deklarerade som

// referenser med det reserverade ordet ref: Referensanrop

class Swapping

{
public static void Swap(ref char tl, ref char t2)
{
char temp;
if (t1 > t2)
{
temp = tl1; // Algoritm fér platsbyte
tl = t2; // av de tva teckenvidrdena
t2 = temp; // tl och t2
}
}
}

51

Bearbetningsdelen av MiniSort (sid 44) har flyttats till en void-metod. Paramet-
rarna t1 och t2 ar definierade som referenser. De tar inte emot nagra teckenvarden
frdn char1 och char2 (se nedan) utan endast deras adresser. t1 och ref charl ar
tva olika referenser till samma véarde charl. Samma sak ar det med t2 och ref
char2. Nar vardena andras i metoden genom referenserna t1 och t2 kan &ndrin-
gen ses i Main () med charl och char2:

// CallByRef.cs

// Ldser in 2 tecken, skickar dem till metoden Swap () i klas-
// sen Swapping som sorterar dem 1 teckentabellens ordning

// Andringen dr synlig i Main() pga referensanrop som patvin-
// gas med ref: adresserna Sverfdrs vid anrop, inte vidrdena
using System;

class CallByRef

static void Main ()
{
char charl, char2;
Console.Write ("\n\tTva osorterade tecken:\n\n\t" +
"Mata in tva tecken skilda med mellanslag:\t");
string str = Console.ReadlLine() ;

charl str[0]; // Férsta tecknet tas ut
char2 = str[2]; // Andra tecknet tas ut

Swapping.Swap (ref charl, ref char2); // Metodanrop

Console.WriteLine ("\n\tDe tva tecknen sorterade:\t\t\t"
+ charl + ' ' + char2 + '\n');

Metoden swap () stéller i ratt ordning tecken som &r inmatade i fel ordning vilket
en korning av ovanstaende program visar:

Tva osorterade tecken:
Mata in tva tecken skilda med mellanslag: Z A

De tva tecknen sorterade: A Z

Gor garna foljande test: Ta bort ref fran definitionen av bada parametrarna i para-
meterlistan av metoden swap (), sd att 1 och t2 blir vanliga char-variabler. Ta
dven bort ref fran de aktuella parametrarna i anropet av metoden Swap() i
Main () Sa att vardena skickas och inte adresserna. Du kommer inte fa tecknen sor-
terade i ratt ordning om du matar in dem i fel ordning. Anledningen dr att genom
borttagningen av ref blir £1 och t2 variabler av enkel datatyp sa att vardeanrop
tillampas automatiskt. Andringen av t1 och t2 i metoden kommer inte att paverka
charl och char2 iMain().

52

1.12 In- och utparametrar

Nu har vi lart oss en hel del om metoder, med och utan returvérde, med en, flera
eller inga parametrar, virde- och referensanrop osv. Andd kan vi inte returnera
flera véarden fran en metod. Det beror pa att alla metoder i C# returnerar endast ett
eller inget véarde. Men for att vara mer noggrant, borde vi l&gga till med return-
satsen. Begreppet returvarde anvands i programmeringsterminologin endast for
vérden som skickas med return-satsen via metodnamnet. | denna bemérkelse
finns det inga metoder med flera returvérden. Men metodens grénssnitt mot om-
givningen dvs mot andra metoder &r inte begrinsad till metodnamnet. Aven para-
meterlistan tillndr grénssnittet och kan anvéndas fér kommunikation med andra
metoder. Hittills har denna kommunikation varit enkelriktad: Vara parametrar
importerade data bara in i metoden. Fragan ar: Kan man inte anvanda dem aven for
export av data ut ur metoden? | sa fall skulle vi kunna fa tillbaka aven flera varden
frdn en metod genom att anvanda flera parametrar. Detta & mojligt fast man kallar
sddana data inte langre for returvarden da de inte skickas med return-satsen via
metodnamnet, utan via parametrarna. De kallas fér utparametrar. Hittills har vi an-
vént bara inparametrar. | detta avsnitt ska vi lara kdnna utparametrar. Det enda som
behdvs for att kdnneteckna en parameter som utparameter ar namligen att definiera
den i parameterlistan som referens vilket kan goras med ref eller out.

| féljande metod finns det en inparameter som tillfér metoden ett varde och fem ut-
parametrar vars varden exporteras ur metoden. De kommer in i metoden oinitie-
rade, initieras dar och anvands sedan i Main () som anropar metoden. | sjalva ver-
ket &r utparametrarna endast referenser till de aktuella parametrarna i Main (). Dér
ar de endast definierade. | metoden sker initieringen med referenserna.

// OutParam.cs

// Tar in vdxelbeloppet a och delar upp det i antalet t 10-
// kronor, f 5-kronor, o l-kronor, h 50-6ringar och resten r
// 1 O6ren. Endast b dr en inparameter pga enkel datatyp t, f,
// o, h och r dr utparametrar pga referensdatatypen out int
class OutParam

public static void Change (double a, out int t, out int £,
out int o, out int h,
out int r)

{ int total = (int) (a * 100); // Vidxeln
t = total / 1000; // 10-kr
f = (total % 1000) / 500; // 5-kr
o = ((total % 1000) % 500) / 100; // 1-kr
h = (((total % 1000) % 500) % 100) / 50; // 50-6ringar
r = (((total % 1000) % 500) % 100) % 50; // rest 1 Oren
}

53

Den reala bakgrunden till metoden ar féljande problem: | en automat erbjuds vissa
varor. Man véljer en vara och stoppar in en viss summa pengar, i regel mer &n
varan kostar. Sedan ska automaten ge tillbaka véxelpengar vilket endast &r mojligt
med ett antal myntslag som &r foreskrivna i automaten. LAt oss siga det ar 10-, 5-,
1-kr och 50-6ringar. | s& fall maste vaxelbeloppet omvandlas till detta mynt”sy-
stem”. Just denna berdkning utférs av void-metoden Change () ovan. Men hur
genomfors omvandlingen med de uttryck for £, £, o, hoch r som star i meto-
den? Féljande algoritm I6ser problemet:

Algoritm for omvandling av ett belopp till olika myntslag

Eftersom denna algoritm endast fungerar for heltal méste vaxelbeloppet b som ar
en double forst konverteras till int, vilket gors i metoden change () :s forsta sats
explicit eftersom automatisk typkonvertering inte kan omvandla nedat i datatyps-
hierarkin. VVaxelbeloppet i kronor och &ren konverteras till ett rent 6rebelopp som
lagras i int-variabeln total. | fortsattningen stér alltsa det givna véxelbeloppet i
variabeln total.

1. For att fa antalet 10-kronor divideras total med 1000 d& 10-kr & 1000 6ren:
t = total / 1000;

Hur méanga ganger ryms 1000 — eller 10-kronor — i total? Det antalet tilldelas till
t. Eller med andra ord: 1000 dras av fran total s3 manga ganger tills resten blivit
mindre &n total. Det antalet som tilldelas till blir antalet 10-kronor. Divisionen
ovan ar inte vanlig division utan heltalsdivision da bade total och 1000 &r heltal.
Dvs total divideras med 1000, resultatet tas, resten ignoreras, t.ex. 6975/1000
ger 6. Se kdrexemplet pé nasta sida. Resten 975 ignoreras hir, men anvands i fort-
séttningen.

2. For att fa antalet 5-kronor divideras resten som blev kvar fran punkt 1 med
500 da 5-kronor &r 500 Gren: f = (total % 1000) / 500;

“Resten som blev kvar fran punkt 1” ir just (total % 1000). Har anvands en
annan operator som ar beslaktad med heltalsdivision, ndmligen modulooperatorn %
som inte har att géra med procentrékning utan ger resten vid heltalsdivision. T.ex.
6975 % 1000 ger 975. Efter att ha dragit av alla 10-kronor fran total divideras
resten med 500 for att fa reda pd hur manga 5-kronor som finns i total. T.ex.
975/500 ger 1. Resultatet av denna division ges till £, resten ignoreras och an-
vands i fortsattningen.

| ytterligare tre steg skulle man kunna forklara de 6vriga formlerna for berékning
av e, h och r. Men nu har ménstret i algoritmen kommit fram: Man tar forra
stegets formel, ersétter / med % och lagger till en heltalsdivision med den nya
enhetens orebelopp. | det allra sista steget daremot, dar man &r ute efter allra sista
resten i ore, maste % anvandas hela végen. Sjélvklart &r restorebeloppet inte av
praktiskt intresse ndr automaten inte kan spotta ut det.

54

For att testa algoritmen ovan anropas metoden Change () av foljande program:

// OutparamTest.cs

// Efter inkép av en vara 1 en automat ska vdxeln ges till-
// baka i1 form av ett antal féreskrivna myntslag:

// 10-kr, 5-kr, 1-kr, 50-6ringar (och en rest i Ore)

// Main () ldser in ett vdxelbelopp, skickar det till metoden
// Change () 1 klassen OutParam som omvandlar vidxeln till mynt
using System;

class OutparamTest

{
static void Main()
{ double amount;
int ten, five, one, half, rest; // Iinitiering behévs ej
Console.Write ("\nAnge ett vidxelbelopp i kr & dren: ");
amount = Convert.ToDouble (Console.ReadLine()) ;
OutParam.Change (amount, out ten, out five, // Endast ut-
out one, out half, // paramet-—
out rest); // rarnas ad-
// resser skickas
Console.WriteLine("\n" + amount + " kr =\t" +
ten + " tio-kronor\n\t\t" +
five + " fem-krona\n\t\t" +
one + " en-kronor \n\t\t" +
half + " femtio-6ring\n\nDet blir\t" +
rest + " dren kvar\n");
}
}

Véaxelbeloppet lases in. Metoden Change () anropas varvid férutom belopp de
aktuella parametrarna ten, five, one, half och rest:s adresser skickas. Dessa
tas emot i Change () av t, £, o, h och r, referenserna till ten, five, one, half
och rest. Nar berakningen gors dar med hjalp av referenserna kan man komma &t
resultaten i Main () darfor att t &r en referens till ten. Samma sak ar det med de
andra parametrarna.

Ett kdrexempel visar att vi far tillbaka de varden som beraknas i metoden pga refe-
rensanrop som automatiskt tilldmpas vid utprametrar av referenstyp.

Ange ett vaxelbelopp i kronor, oren: 69,75

69,75 kr = 6 tio-kronor
1 fem-krona
4 en-kronor
1 femtio-o6ring

Det blir 25 o6ren kvar

55

Ovningar till kap 1

Las kap 1 Algoritmer och programmering, 1.1 — 1.3, sid 6-14

Besvara foljande fragor:

1.1 Med vilket namn betecknas de sprak som de forsta datorerna program-
merades med? Vilka egenskaper hade de? Vad &r deras storsta skillnad till

dagens programmeringssprak?

1.2 Vad bestod den tekniska innovationen av som John von Neumann ut-

vecklade 1944?

1.3 Vad karaktariserar de programmeringssprak som kallas for lagnivasprak?

Varfor “lag”?

1.4 Vilket var det forsta hognivaspraket? Varfor ~hog”?

15 Redogor for skillnaderna mellan begreppen assemblering, kompilering och

interpretering.

1.6 Namn ett exempel pd programmeringssprak som anvande en av metoderna i

fréga 5.

1.7 Vad var det forsta anviandningsomréadet for programmering?

1.8 Finns det fortfarande kod som anvénds som &r skriven i nagot av de forsta
programmeringsspraken? Namn nagra sadana samt deras anvandningsom-

rade.

1.9 Vilket var det forsta programmeringssprak som introducerade kontrollstruk-

turer i programmeringen?
1.10 Vad menas med deklarativ programmering? Ar C# ett deklarativt sprak?
1.11 N&mn nagra underkategorier till deklarativ programmering.

1.12 Vilken programmeringsfilosofi ligger till grund for den algoritmoriente-
rade synen?

1.13 Beskriv med egna ord handelsestyrd programmering. Namn exempel.

1.14 Vad karaktériserar det som kallas for spaghettiprogrammering? Vad ar
huvudkritiken mot den?

56

1.15 Vilket programmeringstekniskt koncept kan ersatta spaghettiprogram-
mering?

1.16 Vad &r den traditionella, procedurala synen pa programmering som rad-
de pé 60- och 70-talet?

1.17 Vad &r den objektorienterade synen pa programmering som kom upp pa
80-talet?

1.18 Mellan vilka tvd programmeringssprak gar historiskt skiljelinjen mellan
procedural och objektorienterad programmering? Nar ungefar intraffade
Gvergangen?

1.19 Vad var anledningen till paradigmskiftet inom programutveckling?

1.20 Vilka for- och nackdelar har enligt din asikt den procedurala synen pa
programmering? Besvara samma fraga angaende den objektorienterade
synen

1.21 Foljande pseudokod beskriver en algoritm for hartvatt:

Start hartvatt

Blot haret

SA LANGE haret kdnns smutsigt
massera in shampo
skolj

OM solen skiner

1at héret sjalvtorka
ANNARS

anvand hértorken
Slut hértvatt

a) Vilka delar av pseudokoden &r instruktioner, vilka ar villkor och
vilka &r kontrollstrukturer? Forklara ditt svar.

b) Dela in instruktionerna i huvud- och underinstruktioner.

¢) Rita ett flodesschema till pseudokoden ovan.

1.22 Foljande algoritm — Kalle-algoritmen — &r formulerad pa vanligt sprak:

Pa vardagar gar Kalle upp. Han tvattar sig, om mamman tittar pa.
Pa sondagar sover Kalle vidare tills mamman ropar honom till
frukost, i s& fall gér han som pa vardagar.

a) Rita ett flodesschema till Kalle-algoritmen. Anta att I6rdag ar en vardag.
b) Oversitt Kalle-flodesschemat till pseudokod.

¢) Finns det i Kalle-algoritmen mdjligheten till en evighetsloop?
Nér skulle den kunna intraffa? Hur kan den forhindras?

57

1.23 Ar féljande pseudokod logiskt identisk med Kalle-algoritmen fran évn 1.22?

Start Kanske_Kalle?
OM det ar séndag
sover Kalle vidare

TILLS mamma ropar till frukost
ANNARS

gar han upp
OM mamma tittar pa

tvéttar han sig
Slut Kanske_Kalle?

1.24 Rita flodesschemat till foljande pseudokod:

Séatt pa radion
Valj en kanal och lyssna
SA LANGE du inte har hittat ett bra program
byt kanal
lyssna
Fortsitt att lyssna pa det valda programmet
Sténg av radion

1.25 Skriv ett C# program som laser in tva heltal, multiplicerar dem med varan-

1.26

dra och skriver ut resultatet blandat med forklarande text. Om du t.ex. matar
in 3 till det forsta och 4 till det andra heltalet, ska programmet skriva ut: 3
ganger 4 ar 12. Utveckla programmet vidare med ytterligare rékneopera-
tioner, kanske s& smaningom till en liten kalkylator, se 1.29 Kalkylatorn
(Projektuppgift 1).

Rita ett flodesschema till foljande pseudokod:

Start Vinterkladsel_1
Lés av temperaturen
oM temperatur< 0
ta sjal, moéssa och handskar
ANNARS OM temperatur < 5
ta sjal och mossa
ANNARS OM temperatur < 10
ta sjal
ANNARS
slipper du vinterkladsel
Slut Vinterkladsel 1

Anvénd dina programmeringskunskaper for att koda pseudokoden ovan och
flédesschemat du ritat, till ett C# program. L&s in ett varde for temperatur
och lat programmet avgora val av kladsel genom att skriva ut "Ta sjal, mos-
sa, handskar... " eller liknande. For kontrollstrukturen flervagsval kan du
anvanda if-else-stegen som kodas i C# pa samma satt som i C++.

58

1.27 Algoritmen i évn 1.26 ovan kan formuleras med féljande pseudokod:

1.28

1.29

Start Vinterkladsel 2

Lé&s av temperaturen

VALJ fall ur
temperatur < 0: ta sjal, mdssa och handskar
temperatur < 5: ta sjal och modssa
temperatur < 10: ta sjal
Annars: slipper du vinterkladsel

Slut Vinterkladsel _2

Rita flodesschemat till pseudokoden ovan och undersok den logiska likhe-
ten mellan flédesscheman i évn 1.26 och 6vn 1.27.

Collatz algoritmen har modulariserats med void-metoden Collatz () som
ar definierad i klassen collatz mod, se sid 42. Modularisera Collatz algo-
ritmen med en metod med returvarde istéllet. Dvs definiera en metod pub-
lic static int Collatz () Som endast returnerar ETT tal i Collatz-se-
kvensen. Anropa metoden fran en annan klass’ Main ().

Tips: Placera loopen samt utskriftssatsen i huvudprogrammet som anropar
metoden. For att dataflédet mellan loopen och metoden ska fungera tilldmpa
referensanrop.

Kalkylatorn (Projektuppgift 1) I denna uppgift ska skapa en klass
Calculator skapas som stddjer foljande funktionaliteter: addition, subtrak-
tion, multiplikation, division och potentiering samt att kunna ange det stor-
sta och minsta av tva inmatade tal.

Dessutom ska din kalkylator vara igang kontinuerligt tills anvandaren véljer
att stanga av den, vilket innebar att du maste lagga in en loop. De olika
rakneoperationerna ska definieras i separata metoder och anropas i Main ().

Féljande metoder ska definieras i klassen calculator:

public double Add(double operandl, double operand2)

{
// Additon av operandl och operand2

}

public double Sub(double operandl, double operand2)

{
// operandl - operand?2
// Aven subtraktion av negativa tal ska vara méjligt

}

public double Mult (double operandl, double operand2)
{

// Multiplikation av parametrarna

}

59

public double Div(double operandl, double operand2?)

{
// operandl / operandZ2
// Division med 0 far ej foérekomma (operand2 != 0)

}

public double Potens (double operandl, double operand2)

{
// Berdkning av potens: operandl upphdéjt till operand2

}

public double max(double operandl, double operand2?)
{

// Returnera det stérre vdrdet av operandl och operand2
// Har kan du anvdnda dig av den fédefinierade metoden
// Math.Max (double a, double b) fér att snabbt

// avgbéra vilken av operanderna som dr stérre

}

public double Min(double operandl, double operand2)
{

// Returnera det mindre vdrdet av operandl och operand2
// Math.Min (double a, double b) kan anvidndas
}

Programmet skall exekvera kontinuerligt tills anvandaren véljer att avsluta
korningen. For att astadkomma detta kan du exempelvis anvinda dig av
en do-sats. Kalkylatorn kan avslutas genom att anvandaren matar in t.ex.
tecknet ’q’ (Quit) istéllet for en operator.

Du fér sjalv bestamma om du vill placera all kod i en fil eller om du hellre
skapar en separat fil for klassen calculator med alla ovanndmnda me-
toder och en klass med Main () i en annan fil som testar klassen calcu-
lator. Det senare dr att foredra.

Det &r upp till dig om du lagger in kod for att kunna hantera fel inmatning
av operator eller andra felaktiga inmatningar.

60

Kapitel 2

Logik for blivande

programmerare

Amne Sida Program
2.1 Logiska operatorer 62 AND_OR
- Sanningstabeller 64
2.2 Datatypen bool 67 TruthTab
2.3 NEGATION som logisk operator 69
- Gissa tal med NEGATION 69 GuessNEG
- Logiska uttryck 71
2.4 Programserien 7esta losenord 73 Passwd
- Metoden Equals () 74
- Kombination av NEGATION, OCH, ELLER 75 PasswdCaps
- De Morgans lagar 77
Ovningar till kapitel 2 83

61

2.1 Logiska operatorer

Att syssla med logik inom programmering &r inte sa konstigt. Vi har redan gjort det
redan i forra kapitlet nar vi anvande avslutningsvillkor for vara kontrollstrukturer.
Logiskt korrekt formulerade avslutningsvillkor &r avgérande for hantering av kon-
trollstrukturer, t.ex. for att undvika evighetsloopar. Begreppet villkor har foljt oss
redan fran bokens allra forsta kapitel: Da diskuterades skillnaden mellan instruk-
tion och villkor i algoritmen Morgonsyssla (sid 21). Medan en instruktion (sats) ar
ett kommando, ett befal som maste utforas kan ett villkor endast testas for att fatta
ett beslut, traffa ett val mellan olika alternativ, t.ex. for att avgéra om en loop ska
fortsatta eller upphora. Alla villkor vi anvant hittills i vara program med kon-
trollstrukturerna if, if-else, do, while och for har varit s.k. enkla villkor. Ett
villkor heter enkelt om dess sanningsvérde — sant eller falskt — kan bestdmmas di-
rekt, utan att blanda in andra villkor eller anvénda s.k. logiska operatorer som vi
ska lara kanna i detta avsnitt. Exempel pa enkla villkor & tal == 0, i <5ellera
<= 9. Enkla villkor kan bildas med jamforelseoperatorer. Nu ska vi ga ett steg vida-
re:

Nar man satter ihop enkla villkor och kombinerar dem med varandra uppstar sam-
mansatta villkor. Men hur ska man sétta ihop tva enkla villkor? Det kan endast go-
ras om det finns ndgot som binder samman dem. Detta “ndgot” kallas for en logisk
operator. Exempel pa logiska operatorer ar det logiska OCH som i C# kodas med
&& och det logiska ELLER som symboliseras av dubbeltecknet | |. De opererar pa
tva enkla villkor och returnerar ett sanningsvarde. Man kallar dem for operatorer,
jamforbara med aritmetiska operatorer dérfor att &ven de “rdknar” pa ett visst sitt,
bara att deras operander inte ar tal utan villkor och deras returvérde inte heller &r
tal utan ett sanningsvarde. Man satter dem mellan tva enkla villkor och far pa detta
satt ett sammansatt villkor. Har ar nagra enkla exempel pa sammansatta villkor
bildade med de logiska operatorerna OCH (&&) och ELLER (| |):

(number == 0) || (number > 0)
(temp <= 10) && (temp >= 25)
(guessedNo < 17) || (guessedNo > 17)

Vi kan se att sammansatta villkor & kombinationer av enkla villkor, logiska
operatorer och parenteser. Att de returnerar ett sanningsvarde beror pa att de bildar
ett sammansatt villkor av tva enkla. Man kan jamfora det med att bilda ett tal av
tva genom att sétta + eller - mellan dem. Sammansatta villkor skiljer sig fran enkla
genom inblandningen av logiska operatorer. Deras sanningsvarde kan inte langre
bestdmmas direkt utan &r beroende av de logiska operatorernas logiska innebdrd.

Nar behéver man sammansatta villkor? Programmet AND_OR pa nasta sida visar att
det &r ganska enkla, vardagliga situationer dar sammansatta villkor forekommer
som kraver anvéndningen av logiska operatorer. Programmet anvéander samman-
satta villkor for att 16sa ett problem som liknar Gissa tal: Ett val mellan tre alterna-
tiv. Trevagsvalet ska nu I6sas utan switch-satsen med en kombination av néstlad

62

if-else och sammansatta villkor med logiska operatorer — ytterligare en generell
metod att programmera flervégsval som vi tidigare hade namnt (sid 185).

// BAND OR.cs

// Hamtar datorns tid och avgér om det dr dags fér dagens
// lunch: Trevdgsval med sammansatta villkor och de logiska
// operatorerna OCH (&&) och ELLER (||). Klassen DateTime:s
// egenskap (datamedlem) Now ger ett objekt av typ DateTime
// som sdtts till datorns aktuella datum och tid.

using System;

class AND_ OR

{
static void Main ()
{
int hour = DateTime.Now.Hour; // Tar ut datortidens
int min = DateTime.Now.Minute; // timme resp. minut
Console.WriteLine ("\n\tKlockan dr " + hour + '.' + min);
if ((hour >= 11) && (hour < 14))
Console.WriteLine ("\n\tDagens lunch kan serveras:\t");
if ((hour < 11) || (hour >= 14))
{
Console.Write ("\n\tDagens lunch kan ej serveras ") ;
if (hour < 11)
Console.WriteLine ("eftersom det ar for tidigt:");
else
Console.WritelLine ("eftersom det ar for sent:");
}
Console.WriteLine ("\n\tDagens lunch serveras mellan" +
" k1 11 och 14\n");
}
}

Kdrs programmet ovan vid olika tidpunkter som motsvarar de tre alternativen fore
kl 11, mellan 11-14 och efter kl 14 far man de tre olika utskrifterna nedan:

Klockan ar 10.45
Dagens lunch kan e]j serveras eftersom det a&r for tidigt:

Dagens lunch serveras mellan kl 11 och 14

Klockan ar 12.11
Dagens lunch kan serveras:

Dagens lunch serveras mellan kl 11 och 14

63

Klockan ar 14.21
Dagens lunch kan ej serveras eftersom det ar for sent:

Dagens lunch serveras mellan kl 11 och 14

Det forsta sammansatta villkoret i programmet ovan ér:
(hour >= 11) && (hour < 14)

Den logiska operatorn && kombinerar de tvéa enkla delvillkoren hour >= 11 och
hour < 14 till ett sammansatt villkor vars sanningsvarde beror pa de bada enkla
delvillkorens sanningsvarden samt den logiska innebdrden av operatorn &&. Paren-
teserna kring de tva enkla delvillkoren kan utelamnas darfor de i alla fall evalueras
forst. Vi har skrivit dem bara for att vara pa den sakra sidan vad galler prioriteten
mellan operatorerna. Den intuitiva inneborden av det logiska OCH i vanligt sprak
ar: Om hour:s varde ar storre an eller lika med 11 och samtidigt mindre &n 14, s&
ar det sammansatta villkoret sant. Dvs om hour:s varde ligger mellan 11 och 14,
ar villkoret sant. Det sammansatta villkoret beskriver alltsa i det har fallet ett inter-
vall. For att testa om ett varde ligger i ett intervall ar ett villkor av sammansatt typ
med operatorn && en lamplig konstruktion. | programmet AND_OR ska dagens
lunch serveras mellan klockan 11 och 14. Fore kl 11 eller efter kl 14 ska ingen
dagens lunch serveras. Dvs om bara ett enkelt delvillkor hour >= 11 eller hour <
14 4ar falskt blir ocksd hela det sammansatta villkoret falskt. For att det sam-
mansatta villkoret ska bli sant maste bada delvillkoren vara sanna. Dvs klockan
maste vara 6ver (eller prick) 11 och samtidigt fore 14.

Den logiska operatorn OCH

Logiken hos operatorn && kunde i exemplet ovan harledas fran det vanliga
sprakets betydelse for ordet OCH. Men hur avgor datorn som inte forstar vanligt
sprak, sanningsvardet hos ett villkor av sammansatt typ med den logiska operatorn
&& ? Hur ar denna operator definierad? En sadan allméan definition av operatorn
&& dr lagrad i datorn for att kunna bestdimma sanningsvérdet till alla villkor som
involverar && vilket forstas galler for alla logiska operatorer. Precis som det finns
definitioner for de aritmetiska operatorerna +, — , * och / , som datorn anvander
for att berdkna aritmetiska uttryck, finns dven definitioner fér de logiska operato-
rerna, som datorn anvander for att evaluera sammansatta villkor. Att evaluera ett
villkor betyder att bestimma dess sanningsvérde.

Sanningstabeller

Varje logisk operator definieras med en s.k. sanningstabell som definierar de san-
ningsvarden som géller for just denna operator — jamforbart med de vanliga rakne-
operatorerna, t.ex. multiplikationen som definieras med multiplikationstabellen.
Den logiska operatorn OCH:s sanningstabell t.ex. ser ut s har:

64

OCH:s sanningstabell

P q P && gq
true true true
true false false
false true false
false false false

I sanningstabellen ovan symboliserar p ett enkelt delvillkor, t.ex. hour >= 11 och
g det andra enkla delvillkoret, t.ex. hour < 14. Da blir p && g det sammansatta
villkoret, sammansatt av de tva enkla delvillkoren med hjalp av operatorn &&. Ta-
bellen ska lasas radvis. Forsta raden (under strecket) sager: Om bada de enkla del-
villkoren p och g har sanningsvardet true, far det sammansatta villkoret p && g
sanningsvardet true. Den andra raden séger: Om delvillkor p har sanningsvardet
true och delvillkor g sanningsvardet false, far det sammansatta villkoret p && q
sanningsvardet £alse 0sv. Sanningstabellen behandlar alla méjliga kombinationer
av vardena true och false for de enkla delvillkoren p och q. Det finns samman-
lagt fyra sddana kombinationer som ar uppstéllda i tabellens tva forsta kolumner.
Resultaten — sanningsvardena for p && q — star i den tredje kolumnen. | och med
att tabellen innehaller alla méjliga kombinationer, definieras den logiska operatorn
&& generellt och aterspeglar ocksa den intuitiva inneborden av det logiska OCH i
vanligt sprakbruk, namligen: Om - och endast om - de bada enkla delvillkoren p
och g ar sanna, ar det sammansatta villkoret p && gq sant, annars ar det samman-
satta villkoret falskt.

Liknande galler for sanningstabellen till den andra logiska operatorn som forekom-
mer i programmet AND_OR.

Den logiska operatorn ELLER
Det andra sammansatta villkoret i programmet OCH_ELLER ér:

(hour < 11) || (hour >= 14)

Villkoret & sammansatt av de tva enkla delvillkoren hour < 11 och hour >= 14
med hjélp av den logiska operatorn | |. Den intuitiva innebdrden av det logiska
ELLER i vanligt sprak ar: Om hour:s varde ar mindre an 11 eller storre &n eller
lika med 14, &r det sammansatta villkoret sant, vilket i AND_OR innebir att ”Da-
gens lunch” inte ska serveras fore 11 eller efter (eller prick) 14. Det racker att
endast ett av delvillkoren antingen hour < 11 eller hour >= 14 &r sant for att det
sammansatta villkoret ska bli sant. Endast om bada ar falska, blir resultatet falskt.
Man inser att klockan inte samtidigt kan vara fore 11 och efter (eller prick) 14, dar-
for anvands har ELLER och inte OCH. Aven har kan logiken hos operatorn | |
harledas fran det vanliga sprakets betydelse for ordet ELLER, narmare bestamt for

65

ANTINGEN ELLER. Men den exakta logiska innebdrden definieras som vanligt av
sanningstabellen:

ELLER:s sanningstabell

P q PIIl q
true true true
true false true
false true true
false false false

I sanningstabellen ovan star p for ett enkelt delvillkor, t.ex. hour < 11 och q for
det andra enkla delvillkoret, t.ex. hour >= 14. Operatorn | | binder samman dessa
tva enkla delvillkor och bildar det sammansatta villkoret (hour < 11) || (hour
>=14).

Férutom OCH och ELLER dr NEGATION en viktig logisk operator. Den negerar sin
operand dvs vander alla dess sanningsvarden till motsatsen. Vi kommer att behand-
la den logiska operatorn NEGATION senare.

Klassen DateTime

Programmet AND_OR hamtar den aktuella tiden fran datorn innan det avgér om det
ar dags for dagens lunch. For att hdmta datorns tid till C#-programmet anvénds
egenskaper som finns fordefinierade i klassen DateTime fran C#:s bibliotek. Vi
behdver inte skriva nagot nytt using-direktiv for att fa tag i denna klass eftersom
den finns med i namnutrymmet System. Klassen DateTime har bl.a. en egenskap
eller datamedlem som heter Now som returnerar ett objekt av typ DateTime SOM
initieras till datorns aktuella datum och tid. Detta DateTime-0bjekt har i sin tur en
datamedlem som heter Hour som tar ut timmen ur den aktuella tiden som ett
heltalsvarde. Dérfor tilldelar vi

DateTime.Now.Hour

till int-variabeln hour. Samma sak gérs med den aktuella datortidens minut-
komponent. Andra delar av datum och tid kan hdmtas med andra datamedlemmar
frdn objektet.

66

2.2 Datatypen bool

I C# finns mojligheten att definiera logiska variabler med datatypen bool som &r
en enkel datatyp och representerar sanningsvérdena sant och falskt. bool ar namn-
given efter den engelske matematikern George Boole som verkade pa 1800-talet
och formulerade logikens lagar genom att anvanda matematisk notation. Variabler
av typen bool kan endast anta sanningsvérdet true eller false.

Observera att true och false inte ar vanliga strangar utan reserverade ord i C#
som representerar sanningsvardena sant och falskt. De &r alltsa logiska konstanter
som kan ges till logiska variabler dvs variabler av typ bool. Datatypen bool till-
ater lagringen av sadana variabler. Detta utvidgar programmerarens majligheter
avsevart. T.ex. kan de sanningstabeller vi stéllde upp i forra avsnitt for de logiska
operatorerna && och | |, aven genereras av foljande program som anvander logiska
variabler dvs sddana av den nya datatypen bool:

// TruthTab.cs

// Lagrar sanningsvdrden i logiska variabler som deklareras
// med den enkla datatypen bool

// Skriver ut sanningstabellerna till de logiska operatorerna
// && (OCH) och || (ELLER)

using System;

class TruthTab

{ static void Main()
{ bool p, q; // Deklaration av logiska variabler
Console.Write("\n p \t qg\t\tp && g \t\tp || g\n" +
Tl o e e e e e e e e e e e o — — — — — — — — ——————————— —— —— —————— \nll)
P = g = true; // Initiering av logiska variabler
Console.Write(p + "\t" + g + "\t\t " + (p && q) +
" \t\t "+ (P Il @ + '\n');
P = true; q = false;
Console.Write(p + "\t" + g + "\t\t " + (p && q) +
"\t "+ (p Il Q@ + '"\n");
p = false; g = true;
Console.Write(p + "\t" + g + "\t\t " + (p && q) +
"\t "+ (p Il @ + '\n');
P = q = false;
Console.Write(p + "\t" + g + "\t\t " + (p && q) +
"Nt T4 (P Il @ + "\n\n");
}
}

Féljande sanningstabeller till operatorerna OCH och ELLER skrivs ut nar program-
met ovan kors:

67

True True True True
True False False True
False True False True
False False False False

| programmet TruthTab &r variablerna p och g definierade som bool och kan
darfor tilldelas véardena true eller false. De Kkallas dven for booleska variabler
vilket ar synonym med logiska variabler. Forst initieras p och q bada till true
(framhévd med vit bakgrund) och skrivs ut i de forsta tva kolumnerna i sannings-
tabellens forsta rad (efter rubriken). Sedan kombineras de med varandra i p && g
samt p | | g vars sanningsvarden skrivs ut i tabellens tredje och fjarde kolumn. I
sanningstabellens andra rad (efter rubriken) upprepas utskriften, men den har géan-
gen med en ny tilldelning av true till p och £alse till q. | den tredje och fjarde
raden gas igenom de andra kombinationerna failse till p och true till q samt
false till bida. Jamfor man resultaten med de enskilda sanningstabellerna vi hade
stallt upp for de logiska operatorerna OCH och ELLER pa sid 65/66 konstaterar man
overensstammelse. Skillnaden &r bara att vi da hade endast pastatt sanningsvardena
och motiverat dem med var intuitiva uppfattning av logiken hos OCH och ELLER,
medan har later vi programmet generera sanningsvardena till de sammansatta
villkoren p && g och p | | g via koden. Man kan ocksa séaga, vi later programmet
applicera de fordefinierade operatorerna && och | | pa de fyra mojliga kombi-
nationerna av true och false och skriva ut deras resultat.

Man kan anvénda programmet TruthTab dven for andra sammansatta villkor och
fa fram deras sanningstabeller genom att skriva in dem i utskriftssatsen istallet for

p&&qresp.p |l q

68

2.3 NEGATION som logisk operator

| de foregdende avsnitten ldrde vi kdanna de logiska operatorerna OCH och ELLER.
Nu ska vi komplettera var lilla samling av logiska operatorer med NEGATIONen
vars symbol & ! . Men forvaxla den inte med utropstecknet som forekommer i
jamforelseoperatorn !'= som star mellan tva aritmetiska uttryck. Som exempel tar
vi ett Gissa tal-spel som anvander slumptal som hemligt tal i dialog med en do-
loop. Vi ska utveckla spelets logik, speciellt loopens avslutningsvillkor med den
logiska operatorn NEGATIONen ! som kan skrivas framfor ett logiskt uttryck for
att negera det.

// GuessNEG.cs
// Gissa tal-spelet med NEGATION
using System;

class GuessNEG

{

static void Main ()
{
Random r = new Random() ;
int guessedNo, secretNo = r.Next(l, 21);
bool wrongGuess; // Deklaration av logisk variabel

do // do-loopen (avslutas med while)
E Console.Write("\n\tGissa ett tal mellan 1 och 20 " +
(Avsluta med 0):\t");
guessedNo = int.Parse (Console.ReadLine()) ;
Console.Write ("\n\t") ;
wrongGuess = ! (guessedNo == secretNo);// Initiering av
if (guessedNo == 0) // logisk variabel
{ Console.WriteLine ("Avbrott: Programmets hemliga " +
"tal var " + secretNo + '\n');
break; // Bryter do-loopen
}
if (guessedNo < secretNo)
Console.Write ("Fér LITET, forsék igen'\n");
if (guessedNo > secretNo)
Console.Write ("Fér STORT, forsék igen'!\n") ;
} while (wrongGuess) ; // Fortsdtter sa ldnge fel gissat
// Stoppar ndr gissningen dr ratt
if (!wrongGuess)
Console.Write ("\aGrattis, du har gissat ratt!'\n\n");
}
}

En korning av programmet ovan kan se ut sa har:

69

Gissa ett tal mellan 1 och 20 (Avsluta med 0): 10
For LITET, forsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 15
For STORT, forsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 12
For LITET, forsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 13
For LITET, forsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 14

Grattis, du har gissat ratt!

Har man efter ett tag ingen lust att gissa vidare och vill avsluta, kan man mata in 0.
Man far da reda pa programmets hemliga slumptal vid just den aktuella kérningen:

Gissa ett tal mellan 1 och 20 (Avsluta med 0): O

Avbrott: Programmets hemliga tal var 20

Till skillnad fran OCH/ELLER som alltid har tva operander, har NEGATIONEN en-
dast en operand, t.ex. p. Negationen sétts framfor den: !'p. Sanningsvérdet vands
om: sant blir falskt och falskt blir sant. Darfor har ! foljande enkla sanningstabell:

P 'p
true false
false true

I programmet GuessNEG ar p i foljande situation villkoret guessedNo == sec-
retNo som forst negeras och sedan tilldelas den logiska variabeln wrongGuess:

bool wrongGuess;
do
{

wrongGuess =\l(guessedNo == secretNo),;
~—
— true eller false

} while (wrongGuess) ;

70

Variabeln wrongGuess deklareras till datatypen bool. | do-satsen tilldelas den det
logiska uttrycket ! (guessedNo == secretNo), ndrmare bestdmt uttryckets san-
ningsvérde. wrongGuess r sant nir guessedNo inte &r lika med secretNo dvs
nar man gissat fel och da fortsétter do-loopen. wrongGuess ar falskt nir gue-
ssedNo &r lika med secretNo dvs nar man gissat ratt och da stoppas do-loopen.

Logiska uttryck

Ett logiskt uttryck ar en kombination av enkla villkor, logiska variabler, de logiska
konstanterna true och false, logiska operatorer och vanliga parenteser som till
slut, nar det hela evalueras, returnerar ett sanningsvarde. Exempel pa logiska
uttryck ar sammansatta villkor. Aven ! (guessedNo == secretNo) &r ett logiskt
uttryck vars vérde &r sant om guessedNo inte dr lika med secretNo, annars
falskt. | satsen pa bilden ovan far den logiska variabeln wrongGuess detta varde. |
denna sats ar = tilldelningsoperatorn som tilldelar vérdet true eller false till
variabeln wrongGuess, medan == ar en jamfdrelseoperator som returnerar ett
sanningsvarde, dvs bestdimmer om véardet inom parentesen blir true eller false.

Observera dven skillnaden mellan utropstecknet som férekommer i jamforelse-
operatorn !'= och utropstecknet ! som logisk operator. Jamférelseoperatorn != star
som ett dubbeltecken (utan mellanslag) mellan tva aritmetiska uttryck, jamfor
uttryckens talvarden och returnerar ett sanningsvéarde. Den logiska operatorn !
skrivs framfor ett logiskt uttryck och returnerar uttryckets omvanda sanningsvérde.

Dubbel negation

I villkoret till i£-satsen som féljer do-satsen skrivs negationsoperatorn ! framfor
den logiska variabeln wrongGuess for att negera den:

if (!wrongGuess)

{

Nu sétter vi in det logiska uttryck som via satsen wrongGuess = ! (guessedNo ==
secretNo) ; hade tilldelats wrongGuess, i i£-satsens villkor:

if (! (! (guessedNo == secretNo)))

{

Darmed traffar nu tva negationer pa varandra som enligt negationens sannings-
tabell tar ut dvs neutraliserar varandra. Dubbel negation av ett sanningsvéarde re-
producerar sanningsvérdet vare sig det ar true eller false, i symbolisk form
' ('p) = p, Vilket &r en allmén logisk lag som galler for alla utsagor p. Man kan
ocksd saga: NEGATIONen &r som operator sin egen invers dvs sin egen motsatt
operator. Loser vi upp den dubbla negationen ovan enligt denna lag sa avslojas i £-
villkorets logiska innebdrd:

if (guessedNo == secretNo)

{

71

Dvs om spelets anvéndare gissar ratt kommer if£-satsens kropp att utforas vilket
innebir att “’Grattis”-meddelandet skrivs ut. Detta dstadkommer man i programmet
GuessNEG genom att negera den logiska variabeln GissaFel — samma variabel
som i do-loopens villkor anvands i positiv (icke-negerad) form for att avsluta den.
Men, kan man undra, kommer “Grattis”-meddelandet inte i alla fall att skrivas ut
dven utan nagot if-huvud? Detta speciellt med tanke pa att do-loopen endast
avslutas nir man gissat ritt och turen automatiskt kommer till Grattis”-meddelan-
det om man skriver det efter do utan if. Resonemanget vore korrekt om det i
loopen inte fanns mojligheten till att avsluta med inmatning av 0 och darmed bryta
loopen. | ett sadant fall ska namligen i£-villkoret forhindra att ”Grattis”-meddelan-
det skrivs ut efter att man avbrutit spelet och redan fatt ”Avbrott”-meddelandet
samtidigt som programmets hemliga tal avslojats.

Ar anvandningen av NEGATION overhuvud taget inte onédigt? Svaret hanger ihop
med hela strukturen i programmet GuessNEG: En enda logisk variabel som initie-
ras till ett logiskt uttryck ska styra bade do-loopen som tillater flera spelomgéanger
och if-satsen som skriver ut ”Grattis”-meddelandet. Men eftersom do ska fortsétta
nar man gissat fel, medan if ska utféras nar man gissat ratt, alltsa tvéart om, kan
man astadkomma en klar logisk struktur om man anvander en och samma logisk
variabel i bada och negerar den antingen i do- eller i i£-villkoret — en teknik som
kan anvéndas i andra problem som har samma logiska struktur. Vi kommer att gora
det i en programserie i slutet av detta kapitel d&r NEGATIONen i kombination med
de andra logiska operatorerna OCH och ELLER tillampas pa verifiering av l6sen-
ord.

72

2.4 Programserien Testalosenord

Har inleds programserien Testa losenord med ett exempel som tillampar vara
kunskaper om loopar och logik pa verifiering av l6senord. Vi borjar forst med ett
enkelt test av endast ett 16senord (programmet Passwd) och kommer sedan att ut-
vecklas till att mata in losenord &ven om caps Lock-tangenten &r paslagen (pro-
grammet PasswdCaps). Nar man tillater paslagen caps Lock-tangent géller det
att verifiera tva losenord. Men forst det enkla testet:

// Passwd.cs
// Enkelt test av endast ett 1ésenord

using System;

class Passwd

{
static void Main ()
{
String input;
bool wrongPasswd;
do
{
Console.Write ("\n\tSkriv ditt lésenord:\t");
input = Console.ReadLine() ;
wrongPasswd = !input.Equals ("hemligt") ;
if (wrongPasswd)
Console.WriteLine ("\n\tFel lésenord. " +
"Forsok igen!") ;
} while (wrongPasswd) ;
Console.WriteLine ("\n\tOK, nu &r du inloggad!\n") ;
}
}

En korning av programmet Passwd ger foljande dialog om man vid andra forsoket
matar in korrekt losenord och beaktar att man inte har caps Lock pa, annars kan
det bli &nnu fler inloggningsforsok.

Skriv ditt losenord: HEMLIGT
Fel l6senord. Forsok igen!
Skriv ditt losenord: hemligt

OK, nu ar du inloggad!

Jamforelsen mellan strdngar &r namligen alltid case sensitive eftersom den gors
tecken for tecken varvid tecknens ASCII-koder jamfors med varandra. Och versaler

73

har ju andra ASCII-koder an gemener. Déarfor kommer inte heller inmatningen av
Hemligt leda till lyckad inloggning.

Logiken i Passwd bestar av den logiska variabeln wrongPasswd som initieras till
det logiska uttrycket !input.Equals ("hemligt") och styr bade do-loopen och
if-satsen som ingar i den. do-loopen ser till att dialogen mellan program och an-
vandare fortsatter sa lange wrongPasswd ar true dvs sd lange man matar in fel-
aktigt l6senord, nagon strang som &r skild frdn hemligt. Strangen lases in och
lagras i string-variabeln input. Jamforelsen mellan den inlésta stréngen och 16-
senordet hemligt gors endast en gang i det logiska uttryck vars sanningsvérde
tilldelas wrongPasswd som anvands bade i do-loopens och if£-satsens villkor. do-
loopen avslutas om wrongPasswd blir false dvs om strdngen hemligt matas in.
Da skriver i£-satsen inte ut ndgot pga wrongPasswd:s false-varde, utan anvan-
daren far ok-meddelandet som star efter do-loopen innan programmet avslutas.
Man ser fordelen med att anvanda en och samma logiska variabel med en och sam-
ma initiering bade i do- och if-satsen — en teknik som vi redan anvént i program-
met GuessNEG (sid 71). Den logiska strukturen i bada programmen ar den samma:
En dialog fors vars avslutning beror pa en viss (korrekt) inmatning. Ett meddelande
om fortsatt dialog skrivs ut i fall av felaktig inmatning. Detta meddelande méste
placeras inuti loopen. | fall av korrekt inmatning skrivs ut ett annat meddelande
som maste placeras efter loopen.

Metoden Equals ()
| programmet Passwd anropas metoden Equals () s har:

input.Equals ("hemligt")

for att testa om den inmatade strdngen input &r identisk med stréngen "hem-
ligt". Redan hur Equals () anropas visar att metoden &r definierad i klassen
String darfor att fore punkten star variabeln input som &r av typ String.
Datatypen string — med lilla s — som vi anvént hittills fér strangvariabler, ar
endast ett alias for klassen string — med stora s. Metoden Equals () testar tvad
strangar pa likhet och returnerar true om de ar lika, annars false. Anropet ovan
returnerar true om variabeln input refererar till en strdng som &r identisk med
strangkonstanten "hemligt", annars false. Darfor kan anropets returvérde forst
negeras med ! och sedan tilldelas bool-variabeln wrongPasswd.

Man kan ju undra varfor strangarna inte jamfors med den vanliga likhetsoperatorn

==, s hdr. input == "hemligt" vilket ar enklare 4n att anropa metoden
Equals (). | C# gar det bra att dven skriva sd. | sjdlva verket har jamforelse-
operatorn == i C# nar den tillampas pa datatypen String, betydelsen “anrop av

metoden Equals()” som jimfor stringarnas innehdll och inte deras referenser.
Med andra ord ar operatorn == ett alias for metoden Equals (). Bade variabeln
input och konstanten "hemligt" &r strangt taget referenser dvs adresser till ob-
jekt av klassen string. Men bade == och Equals() jamfor objekten. Darfor
spelar det i C# ingen roll — till skillnad fran Java — om vi jamfor strangar med ==

74

eller Equals (). Vi kommer dock i fortsattningen att foéredra metodnotationen
Equals().

Kombination av NEGATION, OCH, ELLER

Nar man loggar in pa sitt konto pa datorn, maste man se upp att Caps Lock inte ar
aktiverad, annars blir lésenordet felaktigt och man kan inte komma in. Det beror pa
att i de flesta operativsystem losenord (till skillnad fran anvandarnamn) ar case
sensitive. Vill man fran systemsidan slippa caps Lock-problematiken och under-
latta inloggningen genom att tilldta dven losenord i versaler, méste ett program
inga i operativsystemet som testar l6senordet bade med sma och stora bokstaver.
Ur sakerhetssynpunkt behdver detta inte vara nagot problem. N&r en anvéandare
kanner till sitt 16senord spelar det vél ingen roll om han/hon matar in det med
gemener eller versaler. En liknande fragestallning kan forekomma i andra tillamp-
ningar, dar bade ja och Ja eller nej och Nej skall tillatas som svar pa en fraga om
fortsatt dialog med programmet. Féljande program l0ser caps Lock-problema-
tiken pé tva olika, men logiskt likvardiga stt:

// PasswdCaps.cs

// Anvdndaren skall kunna mata in 18senord i versal eller
// gemener. L&sning med negerade delvillkor kombinerade med
// OCH. Alternativt: Negation pa det hela sammansatta ELLER-
// villkoret

using System;

class PasswdCaps

{

static void Main ()

{

String input; // Lokala variabler
bool wrongPasswd; // 1 Main()

do
{

Console.Write ("\n\tSkriv ditt ldésenord:\t"):;

input = Console.ReadLine() ;

wrongPasswd = !input.Equals("hemligt") &&

!input.Equals ("HEMLIGT") ;

// wrongPasswd = ! (input.Equals ("hemligt") || // Alter-
// input.Equals ("HEMLIGT")); // nativt

if (wrongPasswd)

Console.WriteLine ("\n\tFel lésenord. " +
"Forsok igen!") ;
} while (wrongPasswd) ;

Console.WriteLine ("\n\tOK, nu &r du inloggad!\n") ;

}

En kdrning med inmatningen HEMLIGT i versaler ger lyckad inloggning:

75

Skriv ditt losenord: HEMLIGT

OK, nu ar du inloggad!

Samma resultat skulle forstas ge en kérning med inmatningen hemligt i gemener.
Alla andra inmatningar kommer att misslyckas. Detta beror p& do-loopens logik,
narmare bestamt pé dess avslutningsvillkor wrongPasswd: Sé lange det dr sant ska
loopen fortsatta. Den logiska variabeln wrongPasswd i sin tur har vardet true om
det logiska uttryck som den ér tilldelad till, namligen:

!input.Equals ("hemligt") && !input.Equals ("HEMLIGT")

har vérdet true. Detta sammansatta uttryck &r i sin tur sant endast om bada delut-
trycken &r sanna dvs om input ar varken lika med hemligt eller HEMLIGT.

Ar daremot den inmatade stringen input lika med hemligt eller HEMLIGT, ska
loopen stoppas. D& kommer efter do-satsen ok-meddelandet att skrivas ut och
programmet avslutas. Viktigt for att fa det hela att fungera korrekt ar ocksa att i £-
satsen i loopen som skriver ut meddelandet om misslyckat inloggningsfoérsok har
samma logiska variabeln wrongPasswd med samma varde som villkor.

| uttrycket ovan har vi: 'p && 'q dé&r p=input.Equals("hemligt") Och
g = input.Equals ("HEMLIGT")

Men det finns i logiken en lag som sdger att uttrycket ovan dvs det sammansatta
OCH-uttrycket bildat av de negerade delutsagorna, &r ekvivalent (logiskt likvardigt)
med det negerade sammansatta ELLER-uttrycket:

'p && 'gq=!'(p || 9

Ett vardagligt exempel pa denna lag ar: “Jag dricker kaffe utan socker OCH utan
mjolk.” betyder samma sak som “Jag dricker kaffe varken med socker ELLER med
mjolk.”. Lagen kallas efter den brittiske matematikern De Morgan. Formuleringen
ovan dar De Morgans forsta lag. Enligt denna lag kan vi alternativt till uttrycket i
programmet PasswdCaps dven tilldela féljande uttryck till den logiska variabeln
wrongPasswd:

! (input.Equals ("hemligt") || input.Equals ("HEMLIGT"))

Detta ar i den aktuella versionen av programmet PasswdCaps borkommenterat.
Alternativet innebér: Om det inte ar sant att den inmatade strangen input ar lika
med hemligt eller HEMLIGT, ska do-loopen fortsatta dvs inloggningsforsoket &r
misslyckat och anvandaren méaste géra om forsoket. Ar daremot input lika med
hemligt eller HEMLIGT, ska dialogen stoppas. Da kommer ok-meddelandet att
skrivas ut och programmet avslutas. Observera att negationsoperatorn i detta
alternativ maste héllas utanfor det sammansatta ELLER-villkoret. Vart negationen
ska sattas, ar intuitivt inte sjalvklart, utan framgar av De Morgans lag.

76

Den logiska OCH-operatorn && ger en intuitivt battre forstaelig version och ar
identisk med ELLER-alternativet. Bada versioner tillater inloggning med I6senord
oavsett om det sker med gemener eller versaler.

De Morgans lagar
Sa har kan vi sammanfatta De Morgans lagar:

'(p Il 9
'(p & q)

'p && !qg
'p Il 'q

For en formellt logisk formulering av dessa lagar och deras framstéllning med
mangder se 6vn 5.3 pa sid 83.

Beviset

Formellt ar tva logiska uttryck “lika” med varandra om deras sanningstabeller ar
identiska. Man sager da att de ar ekvivalenta, dvs logiskt likvardiga. Man kan
ocksa sdga att det handlar om de logiska sanningsvardenas likhet. | praktiken bety-
der det att bada ledens uttryck har samma sanningstabell. Den forsta av De Mor-
gans lagar kan man bevisa genom att manuellt ga igenom de enskilda operatorerna
&&, | | och !:srespektive sanningstabeller och satta ihop sedan sanningsvérdena:

P q 'p && !q '(p Il Q)
true true false false
true false false false
false true false false
false false true true

Man ser att bada uttryckens sanningstabeller &r identiska. Mdnstret som blir tydligt
ar foljande: Appliceras negationen pa det sammansatta uttrycket och satts framfor
parentesen istéllet for att appliceras pa varje enskild operand, maste && bytas ut
mot | |. Analogt géller den andra av De Morgans lagar:

'p Il 'g="!'(p && q)

Avenn denna ekvivalens kan visas pd samma satt som den forsta: bada uttryckens
sanningstabeller &r identiska:

P q 'p || 'q '(p && q)
true true false false
true false true true
false true true true
false false true true

Darmed har vi bevisat De Morgans lagar. Gé garna igenom de enskilda operatorer-
na &&, | | och !:s respektive sanningstabeller. Satt ihop sedan sanningsvérdena.

77

2.5 Mangdlara och logik

Vad har méngder med logik att géra? Och varfér blandar vi in ett nytt begrepp i
diskussionen om logik? Det enkla svaret &r just nu: allt vi t.ex. sagt i forra avsnitt
om De Morgans lagar kan man lika bra — kanske t.0o.m. béttre — formulera, forklara
och forsta med méangder. Sa kan man géra dven med andra logiska lagar. Logiken
ar abstrakt, men mangder kan man forestalla sig darfor att de bestar av konkreta
saker och ting. Vi kan med hjélp av mangder visualisera logiken, vilket inte bara
okar forstaelsen utan ocksa skapar — vi kommer att se det — en vacker analogi som
har ett vdrde i sig. Men &ven rent praktiskt kommer vi att ha nytta av méngdlérans
begrepp senare nér vi behandlar databaser (sid 157). Att vi tar upp temat just nu be-
ror pa kopplingen med logiken som behandlats i detta avsnitt.

Mangdoperationer och deras logik

En vildefinierad samling av saker och ting (féremal, objekt) kallas for mangd. En
mangd kallas valdefinierad, om man alltid kan avgéra om néagot element tillhor
mangden eller ej. Vi betraktar endast véldefinierade méngder och utesluter icke-
valdefinierade mangder. For, om vi inte gor det hamnar vi forr eller senare i svarig-
heter av den typ som man gjorde i bérjan av 1900-talet. Forenklat kan man illustre-
ra dessa svarigheter med Russells paradox™ (antinomi, motséagelse). Sé i fortsattnin-
gen forutsatter vi att alla méngder vi pratar om, &r véldefinierade, vilket betyder att
man for alla element i en méngd kan avgdra om elementet tillhdr mangden eller ej.
Vi infor ett antal symboler for méngder och méngdoperationer:

Element av en mangd

L&t mangden A besté av ett antal element.
Mangden A
Att elementet x tillhnér méngden A

uttrycks med: X g A

y tillhér inte A: y$A

Det lilla tecknet € kallas epsilon i det grekiska alfabetet och star for element.

* Russells paradox: Att det dven finns icke-valdefinierade méangder har Bertrand Russell visat med sin
berémda antinomi om barberaren i en by (1903): En liten by har endast en barberare. Byborna delas i tva
mangder: 1. Alla som inte rakar sig sjalva och darfor rakas av barberaren. 2. Alla som rakar sig sjalva
och inte rakas av barberaren. Fragan 4r: Vem rakar barberaren? Denna fraga leder till en oupplosbar
motsagelse: Om han rakar sig sjalv, tillhor han mangden 2, men da far han inte raka sig sjalv. Om han
inte rakar sig sjalv, tillhér han mangden 1, men d& maéste han raka sig sjalv. Det kan inte avgéras vilken
mangd han tillnér. Darfor skapar indelningen av byborna i tvd méngder enligt ovan inga véldefinierade
mangder. Den logiska motsagelsen léstes senare av Russell, Wittgenstein och andra filosofer.

78

Unionen av tva mangder
Man slar ihop (sammanfogar, forenar) tva mangder:

Resultatet ar unionen av mangderna A och B och betecknas med: A UB

XeAUB om XxegAELLER x ¢ B

[Unionen motsvarar den logiska operatorn ELLER.]

Snittet av tvd mangder

Resultatet ar snittet (skdrningsméngden, det gemensamma) av mangderna A och B
och betecknas med:
ANB

X€ANB om xeg AOCHXx¢gB

[Snittet motsvarar den logiska operatorn OCH.]

79

Komplementet av en méangd

Resultatet &r komplementmangden av méngden A och betecknas med: CA

xe [A om X#A

[Komplementet motsvarar den logiska operatorn NEGATION.]

Differensen av tvd mangder

Resultatet &r mangddifferensen av méngderna A och B och betecknas med:
A\B
x € A\B om stOCHx*B

Den tomma mangden

En mangd som inte har nagot element betecknas med den tomma mangden och
har symbolen @ . Ex.:

Tva mangder utan ndgot gemensamt element kallas disjunkta.

Snittet av disjunkta méangder ar den tomma méangden: ANB=0@

81

Cartesisk produkt

Den cartesiska produkten av tva méngder A och B:
A X B (A’kryss” B)
ar mangden av samtliga ordnade par (x, y) dér x tillhér A och y tillhor B.
Exempel: Person = {Ola, Eva, Jimmy, Alexander, Helen, David, Diana }
Lagenhet = {1,2,3}

Den cartesiska produkten av dessa tva mangder bestar av mangden:

Person X Lagenhet = { (Ola, 1), (Ola, 2). (Ola, 3),
(Eva, 1), (Eva, 2), (Eva, 3),
(Jimmy, 1), (Jimmy, 2), (Jimmy, 3),
(Alexander, 1), (Alexander, 2), (Alexander, 3),
(Helen, 1), (Helen, 2), (Helen, 3),
(David, 1), (David, 2), (David, 3),
(Diana, 1), (Diana, 2), (Diana, 3) }

Cartesisk produkt = Kombination av alla med alla = Alla mdjliga par.

Varfér "Cartesisk” produkt?

%\ (o)

René Descartes
y| D)

2D Cartesiskt Nz 22 23/
koordinatsystem W |
med
B som x- och A
som y-axeln.

Cartesisk produkt A x B av seten
A={2,y 2} och B= {1,2,3}

82

Ovningar till kap 2

Skriv ett program som med hjélp av en néstlad £or-sats skriver ut en rektan-
gel fylld med stjarnor (*) till konsolen, bestdende av 9 rader och 20 kolum-

ner.

Numrera raderna och ko-
lumnerna utan att forstora
helhetsbilden. Denna upp-
gift & knappast ndgon ov-
ning i logik, utan snarare i
néstlade loopar. Men den
forbereder de féljande tva
dvningar i sammansatta
villkor och logiska opera-
torer.

Selektera (skriv ut) frdn den stjarnfyllda rektangeln fran évn 2.1 endast den

5:e raden och den 7:e ko-
lumnen s att det visas ett
kors. Ldgg in i den inre
for-slingan som skriver ut
en rad, en if-else-sats
som i varje varv skriver ut
en stjarna om ett samman-
satt villkor med ELLER &r
uppfyllt, annars ett mellan-
slag. Hur blir det om du
byter ut ELLER mot OCH?

Omvandla korset fran évn
2.2 till dess negativ, dvs
skriv ut alla stjarnor fran
dvn 2.1 utom den 5:e raden
och den 7:e kolumnen.
Anvand den logiska opera-
torn NEGATION. Negera
en gang hela det samman-
satta ELLER-villkoret fran
6vn 2.2 och en gang det

sammansatta villkorets delvillkor. | bada fall borde du fa samma resultat.

R
D00 L L

N D T T e b

= CAWINDOWSsystem3 2vemd. exe

12345678901234567890

khkkkkkkkkkkkkkkkkikkk
kktkkhkkfokhhkhhk bk
kkkkkkkkkkkkkkikkkikk
khkkkhkkkkkkkikkikkikk
kkdckkfokkfokkikkikkiokdk
khkkkkkkkkkkkkkkkkikkk
kktkkhkkfokhhkhhk bk
kkkkkkkkkkkkkkikkkikk
khkkkkkkkkkkkkkkkkikkk

= CYWINDOWSsystem32iemd. exe

123456789012 34567890

kkkkkkkkkkkkkkkkkkiok

xR EFRERRR

=

y=1
y=2
¥=3
y=4
y=5
y=6
y=¢
y=8
¥=9

WINDOWS\systemn3 2icmd. exe

12345678901234567890

kb ik kb kb kkokkokodode
Fhkkkk KRR ERERRRERKR
kb whdk kb kb b i
Ekkkkk kkkkkkkkkkkkk

kb ik kb kb kkokkokodode
Fhkkkk KRR ERERRRERKR
Whkkkkk hkkkkkkkkhkkk
kb ik kb kb kkokkokodode

2.4

25

2.6

2.7

Skriv ett program som léaser in tre tal, hittar och skriver ut det storsta av
dem. L&s problemet genom att anvanda tre enkla if-satser med samman-
satta villkor och den logiska operatorn s&. Pa sa satt kan du i varje if-sats
jamfora ett tal med de tva andra. Varfor maste variabeln som lagrar det
stdrsta talet, initieras vid deklarationen?

Skriv ett program som skriver ut sanningsvardet till det enkla villkoret a <
10 dér a &r en heltalsvariabel vars vérde l&ses in. Testa ditt program genom
att mata in t.ex. 9, 10 resp. 11.

Bestam sanningsvérden hos de féljande logiska uttrycken, forst med papper
och penna, sedan i ett C#-program:

a) (8 <7) && (true || false)
b) 1(3 <3.01) || ('(0==0) && true)
C) (true || 'false) && ! (! (4*5==1) && false)

Féljande enkel version av Gissa tal-spelet tillater endast en spelomgéang
(utan loop). For att koda ett trevagsval nastlar programmet en i f-else -sats
i en annan if-else-sats:

// GuessIfElse.cs
// Flervdgsval med ndstlad if-else-sats
using System;

class GuessIfElse

{
static void Main()
{
Console.Write ("\n\tGissa ett tal mellan 1 och 20:\t");
int guessedNo = int.Parse (Console.ReadLine()) ;

if (guessedNo <= 17)
if (guessedNo == 17)
Console.WriteLine ("\n\tGrattis, du har " +
"gissat ratt!\n");
else
Console.WriteLine ("\n\tFér litet!\n");
else
Console.WriteLine ("\n\tFér stort!\n");
}
}

Modifiera programmet ovan genom att anvénda logiska operatorer och
sammansatta villkor i syftet att forenkla néstlingen. Det nya programmet ska
gbra samma sak som GuessIfElse. Bedom i slutet sjalv om det har blivit
mer forstaelig kod.

84

2.8

2.9

Modifiera programmet PasswdCaps (sid 75) genom att lagga in kod som be-
gransar antalet inloggningsforsok till t.ex. 3. Overskrider man denna grins
ska programmet avslutas efter att ha skrivit ut ett meddelande av typ Du har
forsokt 3 ganger. Nu avslutas programmet!

Tips: Anvénd en if-sats som avslutar programmet genom att bryta loo-
pen med break.

Operationer med mangder kan illustreras grafiskt. Hur man gor det kan du
lasa i avsnitt 2.5 Mangdlara och logik pa sid 78. Diagrammen du ser dar kal-
las for Venndiagram efter den brittiske logikern John Venn (1834-1923).

Med Venndiagram kan man illustrera &ven logiska lagar nér de &r skrivna i
mangdnotation, dar en mangd motsvarar en utsaga.

De Morgans lagar som togs upp i kap 2 (sid 77) kan da formuleras sa har:
= (p OCH q) <« = pELLER-(
- (PELLERQ) < -p OCH =(

dar p och q ar utsagor, - ar symbolen for logisk negation och <> symbolen
for logisk ekvivalens. S& har kan man skriva om dem till samband mellan
mangder:

Anta att A och B & méngder och (&r symbolen for komplementméngden,
N for snittet och U for unionen av tvad mangder (se definitionerna i avsnitt
2.5 Méangdlara och logik pa sid 78. D& kan De Morgans lagar skrivas i
méangdnotation sa hir:

[(ANB)= (LA U(B)
(A UB)=(lA) N (B)

Ilustrera De Morgans lagar i mangdnotation med Venndiagram.

85

Kapitel 3

Datastrukturer

och abstrakta datatyper

Amne Sida Program

3.1 Vad ar objektorienterad programmering? 87
3.2 Objektorienterad design med UML 93

- Projekt Lonespecifikation 93

- Kundens kravspecifikation 93

- UML design och modellering i fyra steg 93
3.3 Array som objekt 97 ArrayObj

- foreach-satsen 101
3.4 Hantering av array med referens 104 ArrayRef
3.5 Array av referenser 106 ArrayOfRef
3.6 Array som parameter i metoder 110 ArrayParam
3.7 Hantering av slumptal i C# 114 DoRand

- Array av slumptal 115 RandArray
3.8 So6kning och sortering 117 Search

- Bubbelsortering 120 Bubble
3.9 Generiska metoder 123 G_Bubble
3.10 Listor 128 Lista

- Klassen RandList 129 RandList

- foreach i listor 130 Print
Ovningar till kapitel 3 132

86

3.1 Vad ar objektorienterad programmering?

En given definition pd programmering ar problemlosning med hjalp av datorn. Om
man da beskriver problemets l6sning i form av en algoritm kan man saga Program
= algoritm + data. Denna definition stalldes upp av Niklaus Wirth pa 60-talet och
aterspeglar den procedurala synen pa programmering. Fokuset ligger pé algoritmen
dvs att inte bara hitta utan aven beskriva tillvagagangsséattet (proceduren) for att
I6sa ett problem. Sedan aterstar bara att koda denna beskrivning. En annan defini-
tion som kom upp pa 80-talet och &terspeglar den objektorienterade synen pa
programmering ar:

[Program = Modell av verkligheten]

Om man i formeln Program = algoritm + data lagger betoningen pa data istallet
for pé algoritmen och inte langre betraktar data som ett slags bihang till algoritmen
utan som objekt kommer man till objektorienterad programmering. Denna nya
programmeringsfilosofi genomsyr alla vara program, eftersom C# med alla sina
fordefinierade biblioteksprogram &r i hogsta grad objektorienterade.

Paradigmskifte

Det som i programmeringshistorien gjorde att man behdvde objektorienterad pro-
grammering var den véxande komplexiteten hos program under 70-talet. Program-
mens storlek var avgorande for den véixande komplexiteten. Man insag att det inte
langre rackte till att skriva och testa program som fungerade just da. Det var
nodvandigt att med rimliga kostnader kunna dven underhalla stora program, fornya
och vidareutveckla dem sa att de fungerade &ven i flera ar och att de framfor allt
kunde anpassas till nyuppkomna situationer utan odverkomliga svarigheter. Det i
sin tur krévde att man redan i designstadiet behdvde ett annorlunda upplagg. Foku-
set forskjots fran problemldsning till modellering av verkligheten. Objektorienterad
design kom in i bilden. Allt detta var endast med procedural programmering inte
langre mojligt. Ett s.k. paradigmskifte hade blivit ndédvandigt, dvs en andring av
helhetssynen pa programmering.

Objektorienterad programmering syftar at att efterlikna verkligheten. Man vill avbil-
da den reala vérlden — atminstone den del som tillater datorisering — och konstruera
en modell av den i sina datorprogram for att kunna simulera verkligheten genom att
testa modellen. For att undvika filosofiska diskussioner kan vi anta att den reala vérl-
den bestar kort sagt av objekt. Varlden kring oss ar full med sadana objekt: Manni-
skor, byggnader, bilar, tag, flygplan, trad, mobler, bocker, butiker, skolor, bibliotek,
kontor, anstéllda, kunder, varor, fakturor, order, bokningar, kurser osv. Objekten kan
vara verkliga eller virtuella. Ett datorprogram forsoker att beskriva dessa objekt. Lét
0ss precisera detta:

87

Objekt, klass och metod

Ett objekt har vissa egenskaper. Generellt kan man sdga att ett objekt & summan av
alla sina egenskaper. Ett annat ord for egenskap &r attribut. Ett objekt bestar av alla
sina attribut. Attributen tillndr objektet. T.ex. har objektet bil som attribut fabrikat,
modell, farg, drsmodell, antal kérda mil, antal hastkrafter, maximala hastigheten, an-
tal och storlek pa cylindrar i motorn osv. Alla dessa data ger svar pa frégan ”Vad &r
det for bil?”. Men bilden vore ofullstdindig om vi ndjde oss med dessa intressanta,
men statiska data. Vi vill ocksd veta vad man kan gora med bilen. Ett objekt kan i
regel dven utfora vissa aktioner eller operationer. | den objektorienterade program-
meringens terminologi kallas de for metoder. Typiska metoder for en bil &r t.ex. att
kora fram, att backa, att accelerera, att bromsa, att parkera, att byta olja osv. Den
fullstandiga definitionen pa en bil som objekt vore alltsa att ange bade dess attribut
och metoder. Bilfabrikanten maste forse bilen med alla dessa fardigheter for att kun-
na sélja den. Darfor gar man i bilfabriken efter en plan nar man tillverkar bilen. I den
objektorienterade programmeringens terminologi kallas denna plan fér bilens klass.
Nar vi skriver ett program maste vi forst formulera klassen Bil for att sedan kunna
skapa objekt av den. Klassen skrivs bara en gang, medan objekt kan skapas enligt
klassens beskrivning i obegransat antal. | klassen maste vi ta upp alla attribut och
metoder som ar relevanta eller av ndgon anledning 6nskvarda for en bil. Den praktis-
ka anvandningen avgor fran fall till fall vad som &r relevant eller 6nskvart.

Vad &r skillnaden mellan objekt och klass? Om vi byter ut bilar mot pepparkakor
kan man s&ga att pepparkaksformen &r klassen och sjélva pepparkakorna &r objek-
ten. Klassen ar alltsa en slags mall, en forskrift for produktion av objekt: En enda
pepparkaksform kan producera tusentals pepparkaksgubbar. Gubbarna kan skiljas
frén varandra i vissa detaljer, t.ex. materialet, smaken osv. Man kan t.o.m. mala
dem i olika farger eller modifiera p& annat sétt efterat. De forblir pepparkaksgubbar
av den ursprungliga formen. | formen ingar det som &r gemensamt hos alla peppar-
kaksgubbar. Man har, nar man byggde formen, bortsett fran ovésentliga skillnader
och tagit hansyn endast till det vasentliga, det gemensamma hos alla pepparkakor.

Att bortse fran skillnader och att bibehalla det gemensamma hos olika verkliga
objekt, ar en abstraktion (abstrahera betyder pa latin: att ta bort, att dra av). Man tar
bort allt som skiljer saker och ting av samma kategori eller typ och kommer pa det
viset till sjalva kategorin. Abstraktion leder till begreppsbildning, till klassificering
eller kategorisering av den reala varlden. Ett véaxande barn gar igenom samma ab-
straktionsprocess, ser forst sina foraldrar (objekt), abstraherar sedan via erfarenhet sa
smaningom till begreppet méanniska (klassen) och inser att sina foraldrar ar tva kon-
kreta exemplar av den abstrakta klassen manniska. Sa gor barnet med alla saker och
ting omkring sig och l&r sig vuxenvérldens begreppsapparat. Det abstrakta begreppet
penna (klassen) t.ex. bildas efter att man sett hundratals verkliga pennor (objekt).
Objektorienterad programmering aterspeglar denna naturliga tankeprocess fran det
konkreta till det abstrakta, fran objekt till klass.

88

Metoder

En metod &r en funktionalitet som definieras i en klass. Den talar om vad ett objekt
av denna klass kan gora. Det finns tva steg i hantering av metoder: Forst definierar
man dem dvs skapar man deras kod i en klass. Sedan anropar dvs aktiverar man
dem i ett objekt av denna klass. Ofta &r det forsta steget redan genomfért av andra,
sd vi behdver bara anropa en redan fordefinierad metod. | klassen Bil t.ex. ar
metoderna att kora fram, att backa, att accelerera, att bromsa osv. definierade i hu-
vuden pé bilkonstruktérerna och i deras konstruktionsritningar och dokumenta-
tioner. Sedan har man tillverkat massor med objekt av klassen Bil i fabriken och
byggt in dessa metoder i alla bilar. Vi behtver bara anropa dem i den bil vi kor.
Den bil vi kor &r ett specifikt objekt av klassen Bil. Lat oss kalla det for minvolvo.
Objektet minvolvo har ett antal attribut som t.ex. fabrikat, modell, farg, arsmodell
osv., men ocksa ett antal metoder, bl.a. metoden Kéx (). Parenteserna i metodens
namn brukar man skriva for att karakterisera Kor () som en metod och skilja den
frén klassens attribut. | C# skriver man ett anrop av metoden Kéx () sa hr:

minVolvo.Kor () ;

Observera att fore punkten star ett objekt, inte klassen. Det ar ju den specifika bil
som jag anvander just nu som ska koras. Forst efter punkten star sjalva anropet av
metoden kéx () . Det har séttet att skriva kallas punktnotation. Metoder maste alltid
anropas med punktnotation, vilket har sin grund i att de endast &r deklarerade i
klasser, sa att de endast existerar i objekt av en klass. Till skillnad fran fristdende
funktioner kan metoder varken definieras utanfér klasser eller anropas utanfor
objekt. I C# finns endast metoder, inga funktioner. Om vi bortser fran bilexemplet
kan det i andra sammanhang dven férekomma en klass (istéllet for objekt) fore
punkten i anropet av en metod. | sa fall &r metoden definierad i klassen pa ett spe-
ciellt satt ndmligen som en statisk metod, vilket tas upp senare nér vi behandlar
metoder i detalj.

En annan variant av metoden Kéx () kan anropas pa faljande sétt:
minVolvo.Kor (40) ;

Det kan t.ex. betyda: Kor bilen med hastigheten 40 km/h. Vardet 40 kallas da en
parameter som skickas till metoden nér den anropas. | s fall maste aven metoden
Kér () vara definierad sa att den har beredskapen att ta emot denna parameter. Sa
det kan inte vara samma metod som anropades utan parameter. Det maste vara en
annan variant av den, exakt talat en annan metod med samma namn. Konceptet
kallas 6Gverlagring av metoder och innebar tva eller flera metoder med samma
namn, men olika parametrar.

Klassdiagram

L&t oss ta som exempel en algoritm som beskriver hur man gér upp, duschar, tar pa
sig kladerna och aker till jobbet (algoritmen Morgonsyssla i Progri+, 1.4). Detta ar ett
typiskt fall av problemldsning: Det léser problemet hur man tar sig till jobbet. Till-
vagagangsséttet och framfor allt hur vi beskriver det, ar foremal for algoritmer. Men

89

vem eller vilka gor det, dvs vilka objekt som ar involverade i algoritmen och hur man
beskriver dessa objekt, dr en annan aspekt pa saken. Objektorienterad program-
mering prioriterar objektaspekten framfor algoritmaspekten. Den priméra fragan ar
inte l&ngre vad man gér utan vem man &r dvs hur kan personen beskrivas? Hur man
gor for att ta sig till jobbet kommer att ingd som en del i denna beskrivning. Algo-
ritmen Morgonsyssla blir en metod i objektet Person. Det &r objektet som utfor
metodens instruktioner for att ta sig till jobbet.

Personen kan t.ex. vara en anstélld vilket forresten skulle forklara varfor han tar sig
till jobbet. | sa fall &r personen ett objekt av ka-

tegorin eller klassen Employee. Darfor definie- f \
ras en klass som beskriver alla anstéallda. Perso- Employee

nen i fraga gors till ett objekt, ett exemplar av)

o 9 9 . - firstName
denna klass. Pa sa sétt kan koden ateranvandas _ lastname
dven for andra anstallda. Ateranvandning av - birthDate
kod gor utvecklingsarbetet av programvara ef- - hireDate
fektivare och &r en av den objektorienterade - workingHour
synens fordelar._ I klasseln Employee iingar all + salary()
typ av information som &r relevant for en an- + Present()

stalld, det vi kallar for attribut, t.ex. for- och ef- + MorningActivity ()
ternamn, fddelse- och anstéllningsdatum, ar- k /
betstid osv. Dessutom tar vi upp allt som en an-
stalld kan gora, det vi kallar for metoder, t.ex. att fa 16n, att presentera sig eller ocksé
att ta sig till jobbet. P3 s& satt blir algoritmen Morgonsyssla i den objektorienterade
programmeringens terminologi en metod i klassen Employee. Ett verktyg speciellt
for objektorienterade modelleringar ar UML
/ \ (Unified Modeling Language). Enligt det har

Person modelleringsspraket skulle klassen Employee be-
skrivas med diagrammet till hdger som kallas for
= firstName klassdiagram. Dar stér tecknet — for attribut och
~ ;i::::ie + for metoder. Andra beteckningar for attribut &r
datamedlem eller egenskap. Dessa termer &r
+ Present() synonymer. En Kklass bestdr av datamedlemmar
K*' MorningActivity () / och metoder. Klassen Employee t.ex. har fem
A datamedlemmar och tre metoder.
Klassens konstruktor
Eftersom klassens datamedlemmar i regel &r in-
kapslade (privata) och inte atkomliga utifran
/ Employee \ klassen — detta gér man bl.a. ur datasakerhets-
Y synpunkt — maste programmeraren anvianda sig
- hireDate av ett verktyg for att pa ett kodat sétt anda kunna
- workingHour komma at dem, lasa och andra dem osv. Detta
+ salary() verk?yg kallas klassens konsftrukt'or och &r en
speciell metod vars namn ar identiskt med Klas-

+ MorningActivity () 0 >
\ / sens namn. Den initierar automatiskt klassens

90

privata datamedlemmar nér ett objekt skapas. For enkelhetens skull har vi inte tagit
upp den i klassdiagrammet ovan bland klassens metoder. Konstruktorn har ju endast
programmeringsteknisk karaktér och behandlas i detalj senare.

Arv

I den reala varlden som vi vill efterlikna, finns inga isolerade objekt. Alla objekt &r
mer eller mindre relaterade till andra objekt. En klok modellering maste dra nytta
av de befintliga relationer mellan objekt for att effektivisera och optimera utveck-
lingsarbetet. En s&dan relation &r arvrelationen.

Man kan alltid etablera en arvrelation mellan tvé begrepp om de star i en “ar’-rela-
tion till varandra. | exemplet ovan kan vi konstatera ett en anstélld &r en person.
Darfor kan klassen Employee arva klassen Person, ndrmare bestamt arver klassen
Employee klassen Person:s alla datamedlemmar och metoder. Klassen Person
kallas bas- eller superklass. Klassen Employee kallas harledd eller subklass. Sub-
klassen arver superklassens alla datamedlemmar och metoder, vilket i praktiken
innebdr att klassen Employee tar Over all kod som redan finns i klassen Person
och lagger till ny kod som narmare specificerar en anstalld. Pa sa satt slipper man
skriva om kod som redan finns. T.ex. har en person ett for- och efternamn samt ett
fodelsedatum. Vid modellering av en anstélld &rvs dessa attribut, och man l&agger
till de nya attributen hireDate och workingHour som &r speciella for en anstalld.
Klassdiagrammet ovan (till véanster) visar modellen dar arvrelationen ritats med en
pil riktad mot superklassen. Féljer man pilens riktning underifran kan man avlasa
att det ar klassen Employee som drver klassen Person.

Observera att klassen Employee inte har tva utan fem attribut darfor att den via
arvrelationen dven har Person-klassens tre attribut. Samma géller for metoderna:
Employee-klassen arver metoden Present() fran klassen Person. Modellen
ovan gar utifran att personer presenterar sig pa samma satt som anstéllda. Sedan
har anstéllda en l6neberdkningsmetod som icke-anstéllda personer saknar. Men
varfor stdr metoden MorningaActivity () i bada klasser? Narmare bestamt: Var-
for forekommer den i Employee-klassen fast den &rver den fran superklassen?
Svaret ges av ett annat koncept inom objektorienterad programmering:

Polymorfism

Modellen ovan gér utifrdn att icke-anstallda personer har en annan form av
morgonsyssla an anstéllda. De kanske inte tar sig till jobbet, i alla fall inte alla,
utan har en annan morgonsyssla. S vi har hér att géra med tva olika morgon-
sysslor tillhérande tva olika klasser, men med samma namn. For objekt av typ
Person kommer den ena och for objekt av typ Employee kommer den andra att
gélla. Men varfor har de samma namn? Vore det inte béttre, for att undvika namn-
konflikt, att ge dem olika namn, nar de anda ar olika metoder? Faktiskt inte!

Anledningen till att de har samma namn ar foljande: For det forsta blir det ingen
namnkonflikt darfor att de tillndr olika typer av objekt. De &r inte fristdende utan

91

inkapslade i var sitt objekt som skiljer &t dem. For det andra ska vi inte i onddan
gora utvecklingsarbetet komplicerat genom att hitta pa nya namn pa metoder som
skiljer sig fran varandra endast i detaljer. Ingen manniska skulle kunna komma
ihdg s& méanga namn. For det tredje vill vi efterlikna verkligheten dar det bara
kryllar av beteckningar som &r identiska, men har olika innebdrd i olika samman-
hang. Inte heller det vanliga spraket har olika namn pa dem. Ta féljande exempel:
Att bromsa en lasthil gors pa ett annat satt &n att bromsa en bat. Det finns ingen
anledning att hitta pa ett annat namn for funktionaliteten "att bromsa" hos olika
typer av fordon. Tvartom, det vore forvirrande att anvanda olika namn. Man vill ju
helst slippa att tanka pa de tekniska skillnaderna mellan olika typer av fordon nar
man pratar om bromsning. En och samma funktionalitet &r realiserad pa olika sétt.
Med andra ord, man gor "samma sak”, fast pa annorlunda satt. Objektorienterad
programmering tar dver detta koncept genom att vélja ett och samma namn for
olika metoder. N&r metoderna dessutom finns i klasser som arver varandra kallas
konceptet for polymorfism.

Polymorfism modifierar helt eller delvis funktionaliteten hos metoder
med samma namn som forekommer i en arvhierarki.

”Poly” betyder manga och “morf” 4r form eller gestalt pa latin och antik grekiska.
Polymorfism handlar om en sak som har méanga olika gestalter, t.ex. ett ord som
har ménga olika betydelser. En metod beskriver alltid nagon funktionalitet. Poly-
morfism férandrar denna funktionalitet genom att definiera en metod i super-
klassen och definiera om innehallet, men behalla namnet i subklassen.

Obijektorienterad programmering har kommit till for att forverkliga programme-
ringens gamla énskedrommar om modularisering, ateranvandning av kod och
strukturering av program. Allt for att kunna underhalla stora program, férnya och
vidareutveckla dem, s att de fungerar 6ver langre tid och snabbt kan anpassas till
nyuppkomna situationer.

Objektorienterad programmering bygger pa tre hérnstenar:

e Inkapsling
o Arv
e Polymorfism

De sista tva har vi forsokt att introducera har utan att behova skriva kod. For att
forsta inkapsling behover vi mer detaljerade kunskaper om objektorientering samt
skriva lite kod, vilket vi gor i de kommande avsnitten. Sedan ska vi aterkomma till
arv och polymorfism, for att forse aven dem med kod.

92

3.2 Objektorienterad design med UML

Nu ska vi anvanda det vi lart oss om den objektorienterade programmeringens
grundlaggande principer pa en verklig situation. Vi vill diskutera design- och mo-
delleringsfragor som, speciellt i storre projekt, maste besvaras innan man borjar
koda. Ska det slutliga programmet vara objektorienterat maste redan modellen vara
det. Koden maste baseras pa en objektorienterad modell som fundament. Det hela
gar ut pd att bygga en modell av en verklig situation, i enlighet med den objekt-
orienterade synen pa program som namnts tidigare:

[Program = Modell av verkligheten]

Vi vill realisera denna syn genom att genomfora féljande praktiskt uppdrag som
stalls till oss av en kund. S& har formulerar kunden sin kravspecifikation:

Projekt Loénespecifikation

Vi vill datorisera lénespecifikationen till vara timanstallda. Varje vecka far vi
timrapporter dver deras arbetstider i timmar och minuter. Ett program behovs
som laser in en timanstallds namn, timlén och arbetstider for varje veckodag.
Sedan ska programmet summera arbetstiderna, berékna veckol6nen samt visa
béde veckans totala 16n och arbetstid i timmar och minuter. En kontrollrakning
ska bekrafta resultatet. Lonespecifikationen ska skrivas ut till en fil, sa att den
kan skickas till vara medarbetare.”

Kundens kravspecifikation

Vi doper uppdraget till projekt Lonespecifikation och bestdmmer oss for att 16sa
problemet med ett objektorienterat program. Men hur ska vi lagga upp en objekt-
orienterad losning till detta projekt? Det finns inga fasta tillvagagangssatt som ar
allméngiltiga, inga generella recept som kan tillimpas i alla situationer. Anda vill
vi forsoka att visa en steg for steg-algoritm som ar ndgorlunda anvandbar i de flesta
fallen. Vi ska forst bygga en objektorienterad modell av projektet och sedan imple-
mentera modellen dvs forverkliga den i C# kod.

UML design och modellering i fyra steg

Steg 1: FoOrsta problemet

Las kravspecifikationen (rutan ovan) flera ganger och forsok att fa en sa exakt
uppfattning som mojligt av kundens uppdrag. Det later som en sjalvklarhet. Men
en korrekt uppfattning av problemstéllningen ar faktiskt avgérande. Med andra ord
for att 16sa problemet maste vi forstd det. For att forstd problemet, maste vi vara
fortrogna med den praktiska situationen och ha en nagorlunda god insikt i pro-
blemets viktigaste aspekter utan att darfor behdva vara expert i &mnet. Glom for ett
tag programmeringen och satt dig mentalt in i en annan roll — i en ansvarige for ett

93

foretags verksamhet som vill betala ut I6ner till sina timanstallda. OBS! Det héar ar
en attitydfraga — svarare &n programmeringen.

Steg 2: Identifiera problemets nyckelbegrepp

De kommer vid implementeringen att bli programmets klasser. | databasmodelle-
ring anvands begreppet Entitet. Det ar nagot viktigt for verksamheten — reellt eller
virtuellt — som man kommer att behéva lagra information om. Narmare bestamt
handlar det om en kategori av saker och ting som &r relevanta for verksamheten.
Det ar inte alltid enkelt att avgora vad som &r relevant. Och darfor &r det méjligt att
stélla upp olika modeller av en och samma situation. Vilka nyckelbegrepp finns det
i projektet Lonespecifikation? Vi bestdimmer oss redan for en viss modell nér vi
t.ex. konstaterar att i hiandelsernas centrum star en timanstalld som vi kommer att
behdva lagra information om. Darfor véljer vi nyckelbegreppen anstalld och tid.

Steg 3: Identifiera datamedlemmar till varje klass

Har man hittat ett nyckelbegrepp sa ar nasta fraga: Vad har detta nyckelbegrepp for
egenskaper eller attribut. Ett begrepp kan ofta definieras som méngden av alla sina
egenskaper. Detta kommer att avgéra vilka datamedlemmar vi kommer att ha i den
klass som definierar begreppet. Vad &r det som utgdr en anstalld? L&ser man pro-
jektets beskrivning noga hittar man en anstéllds namn, timlén och arbetstid. Ett
annat satt att hitta attribut till ett nyckelbegrepp &r den s.k. har-relationen.

”Har”-relationen

For att konstatera om namn, timlon och arbetstid &r en anstéllds attribut, &r det ofta
nyttigt att testa den s.k. har-relationen: Har en anstalld ett namn, en timldn och en
arbetstid? Svaret ar ja. Dessutom maste vi ha en anstéllds arbetstider som dag-
arbetstider. S, vi kan redan definiera namn, timlon (hourlyWage) och dagarbets-
tider (dailyWorkTime) som datamedlemmar till klassen anstélld. Projektets krav pé
att berdkna ”veckans totala 16n och arbetstid i timmar och minuter” samt kon-
trollrakningen leder till att &ven inkludera veckolén (weeklyWage), kontroll och
veckoarbetstid (weeklyWTime). Vi staller upp féljande klassdiagram:

4 Time) / Employee \

- hour: int name: String

- min: int hourlyWage: double

weeklyWage: double

+ Sum(): Time control: double
\\f ToDecimal () : doubleA// weeklyWTime: Time

dailyWorkTime: Time[]

Salary(): void

+
\\\tﬁOutput(): Striné4///

94

Enligt standarden UML (Unified Modeling Language) sétts i klassdiagrammen
ovan symbolen + framfér metoderna medan symbolen - skrivs framfér datamed-
lemmarna. Dessutom ar det standard i klassdiagrammen att ange datamedlemmar-
nas datatyper samt metodernas returtyper inkl. void fér metod utan returvarde.
Anmarkningsvért i diagrammen dr att klassen Time forekommer som returtyp till
metoden sum () och dven i arrayform Time[] som datatyp till datamedlemmen
dailyWorkTime. Time[] &r en array av referenser till Time-objekt.

Steg 4: Att identifiera metoder till varje klass

Nasta fraga vi staller till nyckelbegreppet anstélld ar: Vilka operationer &r relevan-
ta for en anstalld? Svaret pa denna frdga kommer att avgora vilka metoder vi kom-
mer att definiera i denna klass. En blick pa uppgiftens beskrivning visar att det ar
I6neberakningen som ar intressant for en anstélld. Sa, vi kommer att ta upp en me-
tod i modellen, sdg Salary(), som beraknar en anstillds veckol6n. Kravet pd ut-
skrift av veckolon och veckoarbetstid leder till ytterligare en metod som vi t.ex.
kan beteckna med Output(). Darmed &r behandlingen av nyckelbegreppet anstélld
avslutad.

For att ta reda pd om det finns fler nyckelbegrepp i projektet Lonespecifikation,
atervander vi till beskrivningen (sid 93). Dir handlar det mycket om att “addera
arbetstiderna, berékna veckoldnen ...” och utféra ndgon form av kontrollrdkning.
Den hér delen av projektet har att géra med tider och kréver att vi har rutiner som
kan hantera tider. Vi skulle kunna inféra nyckelbegreppet arbetstid. Men arbetstid
ar en underkategori av begreppet tid. Sa for att vara mer generell och kunna anvan-
da koden &ven i andra program dar tid &r av intresse, betecknar vi nyckelbegreppet
som tid. Vi kan sedan vélja hour och min som datamedlemmar samt Sum () som
metod i klassen tid.

En annan omstandighet som motiverar inférandet av nyckelbegreppet tid, ar data-
medlemmen dagarbetstider i klassen Employee. Varje datamedlem maste ju fa en
datatyp nér vi ar klara med modelleringen och vill implementera modellen. Data-
medlemmen name kan fa datatypen string. Datamedlemmen hourlyWage (tim-
16n) kan bli en double. Men vilken datatyp ska datamedlemmen dagarbetstider
ha? Det finns ingen fordefinierad datatyp for den. S&, vi maste sjalva definiera en
ny datatyp genom att skapa nyckelbegreppet tid och darmed klassen Time med da-
tamedlemmarna hour, min och metoden Sum ().

Aterstdr problemet med kontrollrékningen som projektet kréver. En meningsfull
kontroll maste anvanda sig av ett annat berikningsforfarande dn det “vanliga” for
att kunna verkligen kontrollera berékningens resultat. Man kan t.ex. addera tider
genom att rdkna i “timme-minut-systemet” dvs addera timmarna och minuterna for
sig och fa resultatet i timmar och minuter. Detta blir vart “vanliga” berdkningsfor-
farande. Men man kan addera tider &ven genom att omvandla tiderna till decimaltal
forst — t.ex. 2 timmar och 45 minuter till 2,75 — och addera dem sedan som vanliga
decimaltal, dvs rékna i det decimala talsystemet. Detta alternativa satt att addera
tider kan vi anvanda for kontroll. Darfor maste vi komplettera klassen Time med

95

ytterligare en metod som utfor omvandlingen av tider till decimaltal. Lat oss kalla
den fér ToDecimal ().

Implementeringen av modellen ovan som vore nasta steg behandlas inte har. Men i
fall att man gjorde en sadan implementering skulle ett korresultat se ut sa har:

Mata in anstédlldens for- & efternamn: Kalle Karlsson

Mata in timlén: 92,50

Arbetstid dag 1 i veckan (tim mellanslag min): 5 30
Arbetstid dag 2 i veckan (tim mellanslag min): 4 45
Arbetstid dag 3 i veckan (tim mellanslag min): 6 15
Arbetstid dag 4 i veckan (tim mellanslag min): 7 10
Arbetstid dag 5 i veckan (tim mellanslag min): 3 50

Den anstdllda Kalle Karlsson

har arbetat denna vecka: 27 timmar och 30 minuter
Veckoloénen ar 2.543,75 kr
Kontrollrakning: 2.543,75 kr

De sista fyra raderna av utskriften ovan visar sjélva I6nespecifikationen. Raderna
innan levererar materialet till den (indata).

96

3.3 Array som objekt

Ordet array betyder i engelskan ordnad skara eller ordnad uppstélining (battle ar-
ray = stridsordning). Som datalogisk term hittar man i litteraturen begreppen félt,
vektor, matris, lista, Ibland anviinds dven hérledd datatyp som syftar at att den
ar baserad pa en annan datatyp. Vi kommer att anvanda den enkla termen array.

En array ar en datastruktur, en ordnad mangd av variabler av samma
datatyp grupperade under samma namn.

En array bestdr av ett antal element vars position kallas for index.

Index ar synonym till nummer och specificerar varje elements position i arrayen for
att “adressera” elementet. Elementen kan i sin tur vara av enkel, sammansatt eller
av referenstyp. Sa man kan dven — med hjalp av referenser — gruppera objekt till en
array. En array &r den enklast tdnkbara sammansatta datatypen. Som exempel tar vi
en array som ar sammansatt av den enkla datatypen int. Varje element i en sadan
array kan betraktas som en indexerad dvs numrerad variabel av typ int.

Hittills behdvde vi skriva 20 satser for att definiera 20 heltalsvariabler. Men nu ger
array oss mojligheten att géra samma sak med endast en sats:

Hittills: enkel datatyp int: Nu: sammansatt datatyp “array av int”:
int nol;
int no2;
—_— int[] no = new int[20];

/

int no20;

Vi definierar en variabel no av datatypen int[], anvénder new och l&gger till in-
formationen om antalet element inom hakparentes: [20]. Men vad &r int[] for
datatyp? Det reserverade ordet new avsldjar att det &r ett objekt. new allokerar min-
nesutrymme for ett objekt bestdende av 20 int-védrden och returnerar den samman-
h&ngande “minneskedjans” adress — ndrmare bestamt adressen till dess forsta cell —
till referensvariabeln no. Dérmed har vi att géra med en referenstyp: Datatypen
int[] &ren referens till en int-array som i sjalva verket &r ett objekt. For att géra
det annu tydligare kan man skriva den nya koden aven i tva separata satser:

int[] no;

no = new int[20];

Det ar inte den forsta utan den andra satsen, narmare bestdmt koden new int[20]
som skapar sjalva arrayen. Darfor star ocksa storleken 20 dér det behovs, namligen
i satsen dar new allokerar minne. Typiskt for array ar hakparenteserna [1, pa en-
gelska brackets. | satserna ovan har [] tva olika betydelser: | den forsta satsen
specificerar int[] variabeln no:s datatyp som en referens till en int-array, i den

97

andra satsen innehéller [20] arrayens storlek. Referensvariabeln no ersatter de 20
vanliga int-variablerna nol, no2, ..., no20, vilket medfor en stor effektivitet i
koden. Ténk dig att det &r inte 20 utan fler data vi vill jobba med. no pekar fysiskt
pa det forsta elementet av arrayen som allokeras i ett ssmmanhangande minnesut-
rymme. Darfor kan man komma &t de andra elementen via indexering som ar bara
ett annat namn for numrering.

Indexering i en array
Lat oss anknyta till exemplet ovan dér arrayen och dess referens no definieras:
int[] no = new int[20];

Lat oss ytterligare anta att vissa varden — de som visas i bilden nedan — har tillde-
lats arrayens element efter satsen ovan. Eftersom elementen lagras i ett samman-
héngande minnesomréade uppstar féljande minnesbild av arrayen i datorns RAM:

Index: 0 1 2 17 18 19
wosr | 25 | 1257 | -10 | ... | 358 | 65 [219 |
no[0] no[l] no[2] e . no[l7] no[l18] no[l9]
no [msoai]

Medan sjélva arrayens allokering (den 6vre delen) gors av new int[20], allokeras
minnescellen no (den undre delen) av int[] no. Kopplingen mellan dem gors av
tilldelningsoperatorn, vilket gor att arrayens adress (t.ex. 190d11 — ett hexadecimalt
tal) som new har genererat, hamnar i minnescellen no. Den sd uppkomna situatio-
nen innebér att no pekar pa eller refererar till arrayen. Under arrayens minnes-
celler har vi skrivit C#-kod som kommer at varje elements varde: no[0] ger den
forsta minnescellens varde 25 som har index 0, no[1] ger den andra minnescellens
varde 1257 som har index 1 osv. no[0] lagras vid adressen till arrayens férsta min-
nescell. no[1] lagras vid adressen till den andra minnescellen som ligger 1 x 4 by-
tes — storleken for en int — langre bort fran no. no[2] lagras vid adressen som
ligger 2 x 4 bytes langre bort fran no osv. Adressering i RAM sker namligen byte-
vis, s att bytes som &r grannar till varandra, har adresser som skiljer sig pa en en-
het. Avgérande for denna indexeringsteknik &r att en array alltid allokeras i ett
sammanhangande minnesomrade. Ser man pa det hela ur hardvarans synpunkt kan
man forsta varfor indexnumreringen borjar med 0 och inte med 1: no[0] kan tol-
kas som den adress som ligger 0 x 4 bytes langre bort fran no, dvs no[0]:s adress
ar identisk med adressen no. Déarfor galler:

Indexregeln: I en array bérjar numreringen av index alltid med 0.
Darfér galler: elementets position = index + 1

Med position menas numret som manniskan anvéander for att numrera elementen.
Maénniskor ar vana vid att pab6rja numreringen av saker och ting med 1. Med index

98

menas numret som datorn anvander fér samma sak. C# och de flesta andra pro-
grammeringsspraken borjar numreringen av index i en array med 0. Tillampad pa
exemplet: Det 1:a elementet i den array som no refererar till har vérdet 25 och
index 0: Positionen & 1 medan indexet dr 0. Det 2:a elementet (vardet 1257) har
index 1 och koden no[1], det 3:e elementet (vardet —10) har index 2 och koden
no[2] osv. Det n:e elementet har alltid index n-1. Darfor har ocksa det 20:e ele-
mentet (vérdet 219) index 19.

Det ar avgorande nar man arbetar med array och ar samtidigt felkélla nr 1 — om
man glommer det — att hélla isar det manskliga sattet att numrera som bérjar med 1
frdn C#-kodens satt som borjar med 0. | exemplet ovan har vi definierat en array av
20 heltalselement med referenserna no[0], ..., no[19]. Antalet element &r 20.
Indexen daremot gar fran o till 19. Felkélla nr 2 ar att forvéxla en arrayelements
index med dess varde: Det sista elementet i exemplet ovan har index 19, men vér-
det 219. Man har alltid med tva tal att gora, index (position) och varde (innehall).
Det galler att halla isar positionen fran innehallet.

Tre egenskaper skiljer objekt fran array:

e Indexering
e Allokering i ett sammanhéangande minnesomrade
e Allaarrayelement har samma datatyp.

Annars behandlas array i C# som objekt: Bada maste skapas med new och man kan
komma &t bada endast med referensvariabler. Bada initieras till defaultvarden dven
om de kan forekomma som lokala variabler i metoder.

Definition och initiering av en array

Hér testas allt vi sagt hittills om array speciellt indexregeln. Utéver det visas ytter-
ligare en egenskap hos array som relaterar den till objekt, ndmligen en datamedlem
Length som lagrar arrayens storlek nér den skapas. Programmet demonstrerar vad
som hander om man Overskrider arrayens maximala index: Man kan kompilera,
men exekveringen stoppas vid éverskridningen av indexgransen, ett tecken pa att
arrayens minnesallokering sker vid run time, dvs programmet kors.

// ArrayObj.cs

// Definierar en array som objekt, visar default-initierings-
// védrdena 0, tilldelar och skriver ut de nya vidrden

// Skriver ut arrayens storlek med datamedlemmmen Length

// Overskridning av arrayens index leder till exekveringsfel
using System;

class ArrayObj

{

static void Main()
int[] no; // Deklarerar en referens no

// till en array av int
// typ array vars adress

99

no = new int[4]; // new skapar ett objekt av
// tilldelas referensen no
// int[] no = new int[4]; // Alternativt 1 EN sats

Console.WriteLine ("\n\tArray-storleken:\t\t"+no.Length) ;
Console.Write ("\n\tArrayens default-initiering:\t");
foreach (int element in no)

Console.Write (element + "\t");

no[0] = 64; // Tilldelar 1l:a elementet
no[l] = 86; // vdrdet 64 osv. Overskriver
no[2] = 34; // default-initieringen

no[3] = -6;

Console.Write ("\n\n\tArrayen efter tilldelning:\t");
foreach (int element in no)
Console.Write (element + "\t");
Console.Writeline (
"\n\n\tOverskridning av arrayens index leder till " +
"programavbrott:\n\n\t\tno[4] inte definierad\n\t" +
"\tIndex 4 Sverskrider grinsen: Exekveringsfel!") g
nol[4] = 1; // no[4] kan kompileras, men
} // leder till exekveringsfel

}

Inte alla satser i programmet Arrayobj exekveras. Det blir avbrott nér den kom-
pilerade koden no[4] i allra sista satsen ska exekveras dér index 4 dverstiger arra-
yens tillatna maximala indexgrans som &r 3 darfor att new i bdrjan av programmet
allokerar endast 4 minnesceller at arrayen, niamligen de med index o, 1, 2 och 3.
Néagon minnescell med index 4 &r inte allokerad. Darfor kan vi inte heller referera
till den. Men eftersom arrayens allokering sker med new och dérmed under exe-
kveringstid leder detta till exekveringsfel, medan kompilatorn godtar den syntax-
massigt korrekta koden no[4]. Programmet Arrayobj ger foljande utskrift nér
den kors:

Arrayens storlek: 4
Arrayens default-initiering: O 0 0 0
Arrayen efter tilldelning: 64 86 34 -6

Overskridning av arrayens index leder till programavbrott:

no[4] inte definierad
Index 4 overskrider gransen: Exekveringsfel!

Unhandled Exception: System.IndexOutOfRangeException: Index
was outside the bounds of the array.

100

Default-initiering av array

Det &r anméarkningsvart att det som géller for referensen no — att den &r oinitierad
nar den skapas — inte géller for sjalva arrayen. Referensen no &r oinitierad och
maste initieras explicit eftersom den &r en lokal variabel i Main (). Men trots att
aven arrayen ar lokal i Main () initieras dess element till 0 som &r defaultvardet till
datamedlemmar av datatypen int. Detta visar att arrayen behandlas som ett objekt.
Programmet ArrayObj skriver ut arrayelementens varden en gang innan och en
andra gang efter att de har fatt vardena 64, 86, 34 och -6. Generellt galler:

I c# maste alla lokala variabler i en metod initieras innan de anvands.
Datamedlemmar i ett objekt initieras automatiskt till default-varden.
Att arrayelementen initieras till 0 (default) visar att arrayen ar ett objekt.

En annan slutsats fran utskriften av programmet Arrayob3 ar:

[Att referera till icke-definierade element i en array leder till exekveringsfel.]

C#-kompilatorn kontrollerar inte en arrays indexgrénser: Arrayobj leder inte till
kompileringsfel. Daremot kontrollerar C#-interpretatorn (C# Virtual Machine) index-
granserna och tillater inte &tkomsten till icke-allokerade minnesplatser, dvs stoppar
skrépvarden. Detta ar ur datasdkerhetssynpunkt &r en férdel. Programmen blir
stabilare. C++ har i detta avseende en mer liberal attityd. Dar ligger ansvaret for
kontroll av indexgranserna helt och hallet hos programmeraren.

Att no[4] inte ar definierat, fast talet 4 ”forekommer” i definitionssatsen new
int[4], beror pa att 4 i hakparentesen av no[4] betyder index, medan 4 i new
int[4] betyder storlek. Den korrekta tolkningen av [] beror pd sammanhanget.
[1 &r symbolen for tre olika operatorer som dverlagrar varandra dvs betyder olika i
olika sammanhang, se sid 102.

foreach-satsen

Denna sats som anvands i programmet ArrayOb3j (sid 99) &r en ny kontrollstruktur
som inte kunde tas upp i kapitlet om kontrollstrukturer (Progrl) darfor att den forut-
sétter array-begreppet eller liknande sammansatta datatyper, som vi inte hade hun-
nit ga igenom da.

foreach-satsen dr idealisk for att skriva ut sammansatta datatypers varden. Den
g6r samma sak som for-satsen, men har en lite annorlunda — ja t.o.m. lite enklare
syntax, om man ar fortrogen med arrays. | programmet ArrayOb3j (sid 99) ser

satsen ut sa har:
foreach (int element in no)
Console.Write (element + "\t");

Oversatt till svenska:

101

FOr varje element av arrayen no
Skriv ut elementet foljt av en tabulator.

element — ett namn som &r valt av oss — kallas for foreach-satsens iterations-
variabel. Den definieras till int och motsvarar for-satsens raknare. element pe-
kar pd vardet (innehallet) som star i arrayen. Iteration betyder upprepning och
innebar har att satsens kropp upprepas: Programflodet fortskrider fran element till
element tills alla element 4r genomgéngna. Det reserverade ordet in betyder av el-
ler element av. no pekar pa arrayen som ska loopas igenom. Dérfor: ~ For varje
element av arrayen no”.

foreach-satsens enkelhet bestar i att den till skillnad frdn £ox-satsen varken be-
hover ett start-, steg- eller slutvarde resp. avslutningsvillkor. Den gar helt enkelt
igenom arrayens alla element, fran det forsta till det sista. Det ar sjalva arrayen
som bestdmmer start-, steg- och slutvdrdena. Variabeln element pekar i varje varv
av loopen pa resp. arrayelementets varde och kan sedan anvandas i loopens kropp
for att gora det man dnskar. | vart exempel for att skriva ut arrayens element foljt
av en tabulator.

foreach-satsens iterationsvariabel maste ha samma datatyp som arrayelementen
eller en sadan datatyp som arrayelementens datatyp automatiskt kan konverteras
till. 1 vart exempel har vi int. Det &r t.o.m. méjligt att ha egendefinierade dataty-
per dvs klasser. Ett exempel pa det & programmet ArrayOfRef£ (sid 107). Dar dek-
lareras iterationsvariabeln i en foreach-sats till den egendefinierade klassen Fish
(sid 106), for att skriva ut ett Fish-objekts sort, vikt, langd, pris och frakt.

En viktig egenskap av iterationsvariabeln &r att den inte kan &ndra arrayelementens
varden i foreach-satsens kropp. Den &r sd att sdga read only. | praktiken innebar
detta att iterationsvariabeln inte far forekomma till vanster om tilldelningsopera-
torn (=) i nagon sats i foreach-satsens kropp. Vill man i foreach-satsens kropp
dndra pd arrayelementens varden maste man anvanda for-satsen istdllet med arra-
yens index som raknare.

Hakparentesernas tre olika betydelser

1. [1 som storleksoperator omsluter i definitioner med new antalet element i
arrayen specificerar ddrmed arrayens storlek. T.ex. innebér koden

new int[4]

i programmet ArrayOb3j att new skapar en array av int med 4 element dvs att
4 minnesceller reserveras for lagring av int-varden. Det gemensamma for alla
dessa element &r att de lagras en efter den andra vid adressen eller referensen
no.

no [0o [o [o [o]

Hir dr frigan om “Hur manga element?”. I matematiken kallas det kardinaltal.

102

2.

[1 som indexeringsoperator omslutar indexet till varje element av en array.
Héar handlar det om ett elements position i arrayen. Man anger index inom
hakparenteser for att referera till elementet nar man vill hdmta eller tilldela det
ett vérde. Indexregeln (sid 98) tillampas enligt vilken indexeringen borjar med
0. Darfor ar no[4] i arrayen ovan inte definierat:

no | nof[0] | no[l] | no[2] | no[3] |

Har ar fragan om “Vilket element?”. I matematiken kallas detta ordinaltal.

[1 som en del av datatypen “referens till array” omsluter ingenting utan &r
tom och skrivs direkt efter en datatyp for att definiera en ny referenstyp. T.ex.

innebér satsen
int[] no;

i programmet Arrayobj att en minnescell allokeras (en referensvariabel med
namnet no definieras) for lagring av en adress till en int-array. Vi kan i fort-
séttningen anvanda namnet no for att komma at arrayen vid denna adress. |
satsen ovan har referensen no inte initierats. Det sker inte heller automatiskt,
for no ar en lokal variabel i Main (). Det sker forst med tilldelningen no =
new int[4]; som initierar referensen explicit.

103

3.4 Hantering av array med referens

Man kan effektivisera hanteringen av arrays inte bara med foreach-satser utan
dven genom att anvanda sig av en s.k. initieringslista som slar ihop definitionen
med initieringen — en kortform som ersatter koden new, men bibehaller dess egen-
skaper:

// ArrayRef.cs

// Initieringslista: Kortform fér definition och initiering
// av en array i1 en och samma sats, inkluderar new implicit
// Utskrift av arrayens element med foreach-satsen

using System;

class ArrayRef

{

static void Main ()
{
int[] no = { 64, 86, 34, -6 }; // Initieringslista:
// Definition OCH ini-
// tiering av en array
// int[] no = new int[4] { 64, 86, 34, -6 }; GOr samma sak

Console.Write ("\n\tVardena fran arrayen skrivs ut " +
" med referensen:\n\n\t") ;
foreach (int element in no)
Console.Write (element + "\t"):;
int[] copy = no; // Ny referens copy tillde-
// las referensen no
Console.Write ("\n\n\tArrayens varden skrivs ut" +
" med den nya referensen copy:\n\n\t");
foreach (int element in copy)
Console.Write (element + "\t");
Console.WriteLine ("\n\n\tEndast referensen kopieras," +
" inte arrayen.\n");

}

En kodrning visar att véardena i initieringslistan som forst tillelas arrayen no verk-
ligen kopierats dver till arrayen copy, for det ar de som skrivs ut:

Arrayens varden skrivs ut med referensen no:

64 86 34 -6

Arrayens varden skrivs ut med den nya referensen copy:
64 86 34 -6

Endast referensen kopieras, inte arrayen.

104

Bade definitionssatsen och initieringssatserna i programet Arrayob;j (sid 99) — det
ar de 5 forsta satserna i Main () — kan slas ihop till en enda sats:

int[] no = { 64, 86, 34, -6 };
Satsen ovan ar bara en forkortning pa:
int[] no = new int[4] { 64, 86, 34, -6 };

Dvs initieringslistan kan skrivas efter new int[4] som egentligen skapar eller de-
finierar arrayen. Men new int[4] far utelamnas. Detta visar att den forkortade
versionen gor tva saker: Forst, fram till tilldeIningstecknet definieras referensen no
(utan nagon uppgift om arrayens storlek). Sedan, fran och med tilldelningstecknet
tilldelas arrayen no:s element fyra varden som star i en kommaseparerad lista grup-
perad inom Klamrarna { } som Kkallas arrayens initieringslista. Kortformen gor
precis samma sak som satsen med new. Kompilatorn far informationen om arra-
yens storlek genom att i initieringslistan rakna antalet element inom klamrarna {
}. Det &r inte ens tillatet att explicit ange det korrekta antalet element inom hak-
parenteserna [1. Det blir kompileringsfel om man gér det, darfor att no endast ar
en referens till en array, inte arrayen sjalv. Observera aven att man inte far anvanda
initieringslistan separat utan endast i samma sats som definitionen.

Valet av variabelnamnet copy kan vara missledande i foljande sats av programmet
ArrayRef 0m man inte beaktar skillnaden mellan referens och array:

int[] copy = no;

copy blir ndmligen en kopia av referensen no i satsen ovan, inte av arrayen — en ny
referens som kommer att peka p& samma array som den gamla referensen no pekar
pa. Det skapas ingen ny array eftersom det varken finns nagon new eller nagon ini-
tieringslista som skulle ersétta new. Anledningen till detta & — som vi konstaterat
tidigare — féljande viktigt faktum:

[En array i C# ar alltid ett objekt som behdéver en referens.]

For att skapa ett objekt maste en new-sats skrivas. En referens definieras utan new.

Minnesmassigt lagras arrayen pa en och samma adress som fran programmet kan
nas med referenserna no eller copy:

no | 64 | 86 | 34 | -6 |

copy

105

3.5 Array av referenser

Hittills har vi bildat arrays endast av den fordefinierade datatypen int. P2 samma
satt kan man ocksa definiera arrays av alla andra enkla datatyper. Men kan man
bilda dven arrays av klasser dvs egendefinierade datatyper? Fradgan méste pre-
ciseras: Menar man arrays av referenser, &r svaret ja, darfor att klasser —
referensernas datatyper — har exakt samma “réttigheter” som vilka andra datatyper
som helst och kan darfor skrivas dverallt i koden dar en fordefinierad datatyp kan
std. Precis som referensvariabler kan skrivas dverallt, dar dven en variabel av enkel
typ kan std. Menar man arrays av objekt, ar svaret nej, vilket vi kommer att forklara
i detta avsnitt. Vi kommer att inse att en array av objekt inte & nddvandig, nar man
har en array av referenser vars element pekar pa ett objekt. Array av referenser gor
0SS samma tjanst som array av objekt.

Vi borjar med att deklarera en klass so8m vi sedan i programmet ArrayOfRef
(nasta sida) kommer att anvénda for att konstruera en array av referenser som i sin
tur ska anvandas for att peka pa objekt av denna klass:

// Fish.cs
// Deklarerar klassen Fish med 3 datamedlemmar och 2 metoder
using System;

class Fish

{
public string sort;
public float weight, size;

public int Price()

{
}

public int Shipping()
{

}

return (int) Math.Round (weight * 7.25 / 100) ;

return (int) Math.Round(weight * 0.02 + size * 0.1);

}

Klassen Fish modellerar en fisk med datamedlemmarna sort, weight och si-
ze. En laxforell t.ex. med en viss vikt i gram och en viss langd i cm kan vara ett
objekt av denna klass, dar laxforell ar fiskens sort. Metoden Price () beraknar
priset pa fisken oberoende av sort, med 7,25 kr per hekto. Metoden Shipping ()
beraknar transportkostnaden utifran fiskens vikt och langd genom att t.ex. mul-
tiplicera kostnadsfaktorn 0,02 med vikten och 0,1 med langden och addera dem.
Bada Metoder returnerar priset och frakten i hela kronor utan oren. Biblioteks-
metoden Math.Round () avrundar till ndarmaste heltal. Sjalvklart kan man an-
marka att den h&r modelleringen har vissa brister ur praktisk synpunkt: For det
forsta ar fiskpriser i praktiken inte oberoende av sorten. For det andra &r bade pris

106

och frakt i regel belopp i kronor och &éren dvs decimaltal och inte heltal. Men vi
gor medvetet bada forenklingar i modellen for att forenkla implementeringen och
koncentrera oss pa det programmeringstekniska konceptet av array av referenser.
Vi vill ndamligen anvinda detta koncept, for att pa ett effektivt sitt skapa och
hantera manga objekt av klassen Fish. FOr det har andamalet &r de namnda bris-
terna i modelleringen irrelevanta. Féljande program skapar en array av referenser
till Fish-objekt och anropar metoderna Price () och shipping () for att sedan
registrera (skriva ut) alla uppgifter till varje objekt:

// ArrayOfRef.cs

// Skapar férst en array av 5 referenser till Fish-objekt, skapar
// sedan 5 Fish-objekt och tilldelar dem till referenserna.

using System;

class ArrayOfRef

{

static void Main()

Fish[] f = new Fish[5]; // Array av referenser

// OBS! Inga objekt
for (int i = 0; i < f.Length; i++)

£f[i] = new Fish(); // Skapar objekt och
// tilldelar adressen
// till en referens

Console.Write ("\n\tMata in sorten till fisk" + (i+l1l) + ":\t");

f[i] .sort = Console.ReadLine() ; // InputCs

if (£[i].sort.Length <= 7) f[i].sort += '\t';

Console.Write ("\tMata in vikten till fisk" + (i+1) + ":\t");
f[i] .weight = (float) Convert.ToDecimal (Console.ReadLine())

Console.Write("\tMata in langden till fisk" + (i+1) + ":\t");

f[i] .size = (float) Convert.ToDecimal (Console.ReadLine()) ;
}
Console.Write ("\nFisksort\tVikt i g\tLingd i cm\tPris\tFrakt\n" +
T e e e e e e e e — — — — — — —— \nll) g
foreach (Fish element in f£)
Console.WritelLine (element.sort + "\t " +
element.weight + "\t\t " + element.size + "\t\t " +
element.Price() + "\t " + element.Shipping() + "\n") ;

}
}
}

| programmet ArrayOfRef skapas en array av 5 referenser till Fish-objekt med
satsen:
Fish[] £ = new Fish[5];

Observera att denna sats inte skapar nagot objekt alls, for da skulle det behdvas ko-
den new Fish () — OBS! parentesen — som inte finns med i satsen ovan. Forvantar
man sig att en “array av 5 Fish-objekt” skulle skapas med new Fish () [5] Sd ar
det fel, for den hér koden kan inte kompileras — ett tecken pa att begreppet array

107

av objekt” maste forkastas. Istallet maste man ga tva steg: Forst maste en array av
rena referenser definieras som i satsen ovan. Initieringsproblematiken léses auto-
matiskt pga att en array alltid initieras till sin datatyps defaultvdrden och att
datatypen referens default-initieras till nu11. D& spelar det ingen roll om det
handlar om referenser till objekt av klassen Fish eller av ndgon annan klass. Sedan
kan man fundera hur man explicit initierar referenserna sa att de pekar pa verkliga
objekt av typ Fish. Detta gors i programmet ArrayOfRe£f med:

f[i] = new Fish();

som star i for-satsen. Forst efter den har satsen har vi allokerat minnesutrymme
for ETT objekt av typ Fish, inte for en array av objekt, for i koden ovan finns in-
get spar av en sadan array. Detta objekts minnesadress tilldelas referensarray-
elementet £[i] dar i tack vare £or-loopen gar fran o till 4. Vi har endast att gora
med en array av referenser till Fish-objekt, for hakparentesen — arrayens symbol
— stdr efter referensvariabeln £ som pekar pa denna referensarray. Varje element i
denna referensarray pekar i sin tur pa ett separat Fish-objekt. De tva stegen som
tas ar: Forst fran £ till referensarrayen och sedan fran den till objekten. Det forsta
steget star utanfor och det andra steget i £ox-loopen. Efter objektens definition ini-
tieras varje objekts datamedlemmar sort, weight och size i for-loopen till vér-
den som lases in fran konsolen. Sedan skrivs de fullstandiga uppgifterna till varje
objekt, dvs aven priset samt fraktkostnaden, ut. Anropet av metoderna Price ()
och shipping () &r inbakade i utskriftssatsen. En kdrning av programmet Array-
ofRef kan ge foljande slutlig dialog:

Mata in sorten till fiskl: Laxforell
Mata in vikten till fiskl: 719
Mata in langden till fiskl: 38,5
Mata in sorten till fisk2: Torsk
Mata in vikten till fisk2: 423
Mata in langden till fisk2: 28,7
Mata in sorten till fisk3: Aborre
Mata in vikten till fisk3: 550
Mata in langden till fisk3: 25,5
Mata in sorten till fisk4: Gadda
Mata in vikten till fisk4: 985
Mata in langden till fisk4: 58
Mata in sorten till fisk5: Gos
Mata in vikten till fisk5: 395
Mata in langden till fisk5: 14

108

Fisksort Vikt 1 g Langd i cm Pris Frakt

Laxforell 719 38,5 52 18
Torsk 423 28,7 31 11
Aborre 550 25,5 40 14
Gadda 985 58 71 26
Gos 395 14 29 9

“Array av objekt” ?

For att kunna datorisera en verksamhet med fiskar behdver vi objekt av typ Fish.
Sjalvklart skulle man kunna skapa sadana objekt t.ex. med Fish £1 = new
Fish() ; osv. Men vad gor man om man vill modellera en handel med stora fisk-
mangder under en langre period? Array skulle da vara den givna losningen for att
effektivisera kodningen. Men funderar man ndrmare pd begreppet “array av
objekt” av typ Fish dyker upp foljande fraga: Vilket defaultvarde ska t.ex. en ar-
ray av Fish-objekt fa vid initieringen? Till de enkla datatyperna i C# kommer de
fordefinierade defaultvardena o, tom stréng, null, nolltecknet och false. Men
Fish & ju ingen fordefinierad datatyp. Det finns ingen begransning pa egendefi-
nierade datatyper (klasser) och det gér inte att forutsaga vilka man kan skapa i C#.
Och darfor gar det inte heller att fastsla vilken default-initiering en sadan array
skulle f. Vi ser att begreppet “array av objekt” leder till en 4terviindsgrind. Los-
ningen &r array av referenser — referenser till objekt dvs en tvastegslosning som
anvéndes i programmet ArrayO£Ref£ (sid 107).

109

3.6 Array som parameter i metoder

Array som bearbetar storre datamangder ger upphov till mer komplexa och sofisti-
kerade program. Exempel pa det &r applikationer som soker, sorterar eller krypterar
data. Vi kommer i fortsattningen att behandla enkla varianter av sadana program.
Modularisering &r metoden for att bryta ned stora komplexa program i mindre och
enklare moduler. Helst vill man ha program som bestar av ett antal enkla, éver-
skadliga metoder dér varje metod loser ett specifikt problem. Sedan vill man sitta
ihop dem dvs anropa dem med ett antal parametrar fran Main () och kontrollera
hela handelseforloppet frén denna metod som helst ska ha sa lite kod som mgjligt.
Ju mer avancerade datatyper man anvénder i sitt program desto stérre blir behovet
av modularisering. Sjéalvklart vill man &ven modularisera program som anvéander
array. | C# ar det mojligt att skicka en array som parameter till en metod dvs att de-
finiera en array i parameterlistan. | nésta program definieras en void-metod
Method () med en array av int som parameter:

// ArrayParam.cs

// Skickar en stor array till en metod, men:

// Array som parameter i en metod behandlas som en referens
// Parameterdverféring sker med referensen: adressen skickas
using System;

class ArrayParam

{

static void Method(int[] b) // Array som parameter

{

Console.WriteLine ("\n\tI metoden\n\tdr arrayens sista " +
"element fore dndringen " + b[999]);
b[999] = 1; // Andringen
Console.WriteLine ("\n\t\t\t och efter &ndringen " +
b[999] + '\n');
}

/***/
static void Main()

int[] a = new int[1000]; // Array med 1000 nollor
Console.WriteLine ("\n\tI Main() \n\tdr arrayens sista " +
"element FORE anropet " 4+ a[999]);

Method (a) ; // Referensanrop: arrayens
// adress skickas till metod
Console.WriteLine ("\tI Main () \n\tdr arrayens sista " +
"element EFTER anropet " + a[999] + '\n');

}

L&t oss borja titta pd Main () innan vi gar in pa hur arrayen b i metoden Method ()
behandlas. | Main () har vi en int-array a med 1000 element, alla initierade till

110

default-vardet 0. En kdrning av ArrayParam avsldjar dven en del intressanta ny-
heter for oss. Den viktigaste ar att en andring som gors i en annan metod ater-
speglas i Main ():

I Main()
4r arrayens sista element FORE anropet 0

I metoden
dr arrayens sista element fore andringen 0

och efter andringen 1

I Main()
dr arrayens sista element EFTER anropet 1

Som man ser har arrayen a:s sista element a[999] — kom ihag att indexeringen
hos arrays borjar med 0 — som hade initialvardet 0, EFTER anropet av metoden fatt
vardet 1, fast denna &ndring inte gjorts i Main () utan i metoden Method (), dessu-
tom med arrayen b och inte med a. Detta verkar bryta mot de regler vi lart oss om
lokala variablers livsldngd, darfor att a trots allt &r en lokal variabel i Main () och
dérmed inte giltig i Method () . Samma sak galler for b som &r lokal variabel i Me-
thod () och darmed inte giltig i Main (). Gatans I6sning &r att det handlar endast
om en och samma array till vilken a och b &r bara tvé olika referenser. Darfor pra-
tar vi i utskriften ovan inte om arrayen a och inte om arrayen b utan om arrayen,
for det finns bara en. For att forsta detta battre 1at oss titta pa foljande minnesbild
som ska fortydliga vad som héander i programmet ArrayParam:

Index: 0 1 2 3 998
999
a = 12EFED | 0 | 0 | 0 | 0 | | 0 | 0/I|
4000 bytes
b
4 bytes

Vi vet att varje int tar 4 bytes i minnesutrymme. Dérmed tar hela arrayen a med
1000 int-element 4 000 bytes. Detta “’stora” minnesutrymme allokeras av satsen:

int[] a = new int[1000];

a ar en referensvariabel som lagrar ett hexadecimalt tal, sdg 12EFE0 (decimalt:
1241056) som ar arrayens adress. Adresser visas i datavarlden — det &r en de facto-
standard — som tal i hexadecimalt format. Med adress menas alltid en plats i da-
torns RAM-minne (Random Access Memory). Nér en array definieras lagras den vid
en adress och arraynamnet blir en 1ank mellan programmet och denna fysiska ad-

111

ress. N&r arrayen a sedan i metodanropet Method (a) ; skickas som en aktuell pa-
rameter, d Gverfors inte arrayens varden utan arrayens adress till metoden Me-
thod (). Denna adress tas emot av den formella parametern b som &r definierad i
metodens parameterlista som en array av int. P4 sd satt hamnar a:s adress, det
hexadecimala talet 12EFEO i minnescellen b. Dvs b lagrar a:s adress som tar 4 by-
tes. Darmed pekar bdde a och b pd en och samma array. Nagon kopiering av ar-
rayinnehallet pa 4 000 bytes till en ny plats forekommer inte. Endast adressen pa 4
bytes kopieras till b vid metodanropet. | Main () kommer man &t arrayen med a
och i Method () gor man det med b. N4r vi sedan i Method () dndrar vardet i arra-
yens sista element med b fran o till 1, kan dndringen ses i Main () med a.

Den ovan beskrivha metoden for 6verforing av parametrar kallas referensanrop.
Dvs inte parametrarnas varden utan deras adresser dverfors vid metodanropet. Nar
parametrarnas adresser 6verférs och inte deras varden, forekommer ingen férdubb-
ling av minnesatgang. Alla eventuella andringar i metoden aterspeglas i Main ().
Valet av parameterdverféringsmetod styrs av datatypen:

I C# valjs automatiskt referensanrop (Call by reference) for parameter-
overforing vid metodanrop, om parametern ar av datatypen array.

L&t oss nu dven g in pa med vilken syntax programmet ArrayParam anvander en
array som en parameter i en metod.

1. Att definiera en metod med array som parameter
har gjorts i metoden Method () genom att definiera den formella parametern som
en array av int dvs samma datatyp som den aktuella parametern har i anropet:

int[] b

Antalet element inom hakparentesen far inte anges. Att antalet element inte beh6vs
har beror pa att en formell parameter far sitt initialvarde fran den anropande meto-
den. Aven arraystorleken foljer med vid anropet. Detta har i sin tur att géra med att
hela definitionen av en metod endast dr en mall, en foreskrift om vad som ska
hé&nda om metoden anropas, en potentiell kod som blir aktuell forst nér vi anropar
metoden. | metoden Method () star definitionen av parametern b till datatypen ar-
ray av int som vanligt i parameterlistan och darmed i metodhuvudet:

static void Method(int[] b)

2. Attanropa en metod med array som parameter
sker genom att skriva den aktuella parametern som array utan hakparenteser i an-
ropet:

Method (a) ;

Anmarkningsvart ar att det for forsta gdngen dyker upp en array utan hakparentes-
er. S4, tittar man inte pa definitionssatsen nagra rader ovan kan man inte kinna
igen a som array. Anledningen till att hakparentesen inte far std efter arrayen a i
anropssatsen ar just det vi sade ovan om referensanrop: Anropet skickar inte hela

112

arrayen med dess var-den till Method () utan endast referensen a. En hakparen-
tesens skulle tolkas som kod som anger index som specificerar ett visst element i
arrayen. En anropssats av typen Method (a[999]) ; skulle skicka endast ett ele-
ment av arrayen namligen det med index 999. Det blir i sa fall ett tal av typ int
som skickas till metoden. Man kommer att f& kompileringsfel i alla fall eftersom
metodens formella parameter b &r definierad som en array av int och inte som en
vanlig int. Den enkla datatypen int kan inte konverteras till den sammansatta da-
tatypen array av int. De automatiska typkonverteringsreglerna géller endast for
enkla datatyper. Det tdnkbara alternativet Method (a[1) ; fungerar inte heller av
samma anledning: Det handlar om en icke-definitionssats dar hakparentesens
innehall tolkas som index. Men index far aldrig utelamnas (se punkt 1). For att
skicka en array som parameter till en metod maste alltsa arrayen i metodanropet
skrivas endast med arraynamnet utan hakparentes. Sjalvklart maste arrayen innan
anropet vara definierad i Main () som vanligt med hakparentes och en uppgift om
storleken. Arraynamnet anvénds vid anropet som adressen till arrayen.

113

3.7 Hantering av slumptal i C#

En nackdel av programmet GuessbDo 4r att det hemliga talet ar hardkodat som 17.
Det skulle innebéra en vasentlig forbattring av Gissa tal om programmet kunde
generera ett slumptal mellan 1 och 20 som hemligt tal varje gdng man korde det.
Dérfor dppnar vi har en liten parentes om slumptal av typ int och deras hantering.

Generellt kan man med datorn som en deterministisk maskin som datorn &r, inte
producera dkta slumptal utan endast simulera dvs pa nagot satt berakna s.k. pseu-
doslumptal enligt en viss algortim. Overallt vi pratar om slumptal menar vi egent-
ligen pseudoslumptal. 1 C# kan man simulera slumptal pa olika sétt, bl.a. med
klassen Random och dess metod Next () som returnerar slumptal av typ int mel-
lan 1 och int.MaxValue, OM den anropas utan parameter. En annan variant av
Next () returnerar slumptal mellan sina parametrar, ndrmare bestamt:

a <= r.Next(a, b) < b

dér r &r ett objekt klassen Random. FOr att skraddarsy metoden Next (a, b) till att
fa slumptal mellan 1 och 20 maste vi anropa r.Next (1, 21). Féljande program
testar bada varianter av Next () :

// DoRand.cs

// Skriver ut 5 slumptal mellan 1 och int.MaxValue samt
// 20 mellan 1 och 20

// Anropar tva varianter av Random-metoden Next () en gang
// med ingen parameter, en gang med tva paramtrar

using System;

class DoRand

{
static void Main()
{
inti=1, j =1;
Random r = new Random(); // Objekt av klassen Random
Console.WriteLine ("Slumptal mellan 1 & int.MaxValue:\n");
do // do-loop
Console.WriteLine ("\t" + r.Next()):;
while (i++ < 5); // 1 testas forst, Skar sedan
Console.WriteLine ("\nSlumptal mellan 1 och 20:\n\t");
do // do-loop
Console.Write(r.Next(1l, 21) + "\t");
while (j++ < 20); // j testas férst, Skar sedan
Console.WriteLine('\n') ;
}
}

En korning av DoRand ger foljande resultat:

114

Slumptal mellan 1 & int.MaxValue:

1460841191
225482400

1438321568
1700127070
1513406452

Slumptal mellan 1 och 20:

7 20 2 12 12 14 3 16 3 15
2 15 12 9 1 10 14 15 1 2

For det forsta ser man att vi far endast heltal vilket beror pa att bada metoderna
Next () OoCch Next (a, b) returnerar int. Vill man ha decimalslumptal finns det en
annan metod i klassen Random Som heter NextDouble (). For det andra har vi fatt
i intervallet [1, 20] &ven randvérdena 1 och 20. Hade vi anropat r.Next (1, 20)
hade vi fatt slumptal mellan 1 och 19 eftersom den andra parametern inte ingar i
slumptalsgenereringen. S&, anropet r.Next (1, 21) ger slumptal mellan 1 och 20.

Nar det géller de béda varianterna av metoden Next () ger den ena utan parameter
de stora slumptalen i utskriften ovan mellan 1 och int.Maxvalue och den andra
med tva parametrar de sma slumptalen mellan 1 och 20. Tva olika do-satser i Do-
Rand tar hand om slumptalen i dessa tva olika intervall. | den forsta do-satsen
anropas Next () utan parameter, i den andra med tva parametrar. Vi har hér att go-
ra med ett koncept i programmering som kallas éverlagring av metoder. Innebor-
den ar att det &r tva olika metoder med samma namn, men olika parameterlistor. |
anropet avgors vilken av dem det galler déarfor att parameterlistan avslojar identite-
ten — bade for oss och kompilatorn. C#-biblioteket ar fullt med Gverlagrade
metoder. De flesta biblioteksklasserna har t.o.m. flera 6verlagrade metoder dvs fle-
ra olika metoder med samma namn.

Array av slumptal

Eftersom vi i fortsattningen kommer att jobba med flera program som anvéander
slumptal lagrade i en array vill vi skriva en metod som kan anvandas av alla dessa
program. Vi har valt formen av en void-metod for att generera ett antal slump-
varden och tilldela dem till elementen i en array:

// RandArray.cs

// Definierar en metod Rand() som lagrar slumptal

// 1 arrayen no och skriver ut dem

// Anropar biblioteksmetoden Next (a, b) for att fa ETT
// slumptal mellan a och b i varje varv av for-loopen

using System;

115

class RandArray

public static void Rand(Random r, int[] no, int a, int b)
{
Console.Write ("\n\t" + no.Length + " heltal mellan " +
a+ " och " + b + " slumpas fram:\n\n\t");
for (int i=0; i < no.Length; i++)

{
no[i] = r.Next(a, b);
Console.Write(no[i] + " ") ;
if ((1 % 16 == 0) && (i '= 0))
Console.Write ("\n\t");
}

Console.WriteLine ("\n\n") ;

}

For forstaelse av biblioteksmetoden Next () hanvisas till hantering av slumptal.
Det nya i koden ovan &r att slumptalen lagras i en array som kommer att anvandas
av fler program vilket demonstrerar inte bara modularisering utan dven ateranvand-
ning av kod. Filen ovan innehaller inte ett fullstandigt program utan endast en klass
med void-metoden Rand () som har fyra parametrar varav den ena &r en array av
int, Kallad no som lagrar slumptalen. Arrayen deklareras i parameterlistan och
tilldelas i kroppen mellan a och b via satsen:

no[i] = r.Next(a, b);

som i en for-sats anropar den biblioteksmetoden Next () som i sin tur i varje varv
av loopen slumpar fram ett slumptal mellan a och b. Vi har anvént denna metod
tidigare i andra program. £or-satsen som anropar metoden skriver ut slumptalen.

116

3.8 SOkning och sortering

Ett viktigt — numera sjalvklart — anvandningsomrade for datorer ar sokning i och
sortering av stora datamangder. Programmeringstekniskt sett kan sadana applika-
tioner inte skrivas utan array (eller hogre datastrukturer). Darfor &r sékning och
sortering klassiska tillampningar for sammansatta datatyper. Samtidigt 6kar beho-
vet av modularisering ju mer avancerade datatyper man anvander i sitt program.
Nu ndr vi lart oss att skicka arrays som parametrar till metoder, kan vi modula-
risera program som arbetar med arrays. Detta &r nddvandigt for att koncentrera sig
pa den egentliga uppgiften namligen sokning, sortering eller andra applikationer
som t.ex. kryptering som kommer att tas upp i nésta avsnitt. Nar man soker eller
sorterar data finns redan ett material i form av databaser, tabeller eller listor osv.
som man anvander.

For att skaffa underlag for vara testprogram har vi valt att producera slumptal och
lagra dem i en array.

Féljande program skapar med hjélp av metoden Rand () som &r definierad i pro-
grammet RandArray (sid 115) en array av 200 slumptal mellan 1 och 1000 och skri-
ver ut dem. Sedan laser det in ett tal som ska hittas gemom att anropa metoden
MySearch () som &r definierad i programmet Search (sid 117):

// SearchTest.cs

// Skapar en array och skickar den till metoden Rand () d&r
// den tilldelas slumptal. Andringen fds tillbaka pga refe
// rensanrop. Den tilldelade arrayen skickas vidare till
// metoden MySearch () som sdéker efter ett inldst tal bland
// slumptalen.

using System;

class SearchTest

{
static void Main()
{
Random r = new Random() ;
int a =1, b = 1000, searchedNo;
int[] intArray = new int[200]; // Default-initiering
RandArray.Rand(r, intArray, a, b); // Slump-tilldelning
Console.Write ("\tAnge tal som programmet ska séka " +
+ "efter:\t");
searchedNo = int.Parse (Console.ReadLine()); // S&kt tal
Search.MySearch (intArray, searchedNo) ; // Anrop av
} // sbkmetoden
}

117

Aven om vi inte gatt igenom programmets alla delar — klassen search med meto-
den MySearch () — ska vi titta pa en korning for att battre forstd vad som hander:

200 heltal mellan 1 och 1000 slumpas fram: \

237 255 104 898 422 575 712 34 775 299 192 530 442 17 656 344 276
18 929 282 720 967 336 17 934 378 427 667 600 787 581 838 346

525 224 576 710 484 865 211 360 686 858 798 455 501 142 521 138
405 101 747 951 13 889 271 567 88 612 45 796 46 82 989 366

355 832 918 441 728 635 440 801 719 570 35 757 539 563 434 237 Anrop av
907 177 843 334 835 535 981 637 954 657 623 520 468 63 315 252 RandArray.
870 80 101 317 872 728 58 771 662 594 880 444 502 162 676 173 Rand ()

179 809 890 517 887 303 532 468 852 282 488 719 660 568 981 657
256 784 888 460 463 118 13 180 120 73 673 242 303 538 783 793
982 98 342 660 174 446 13 215 549 281 113 591 241 987 759 95
261 224 836 719 922 217 711 709 444 358 398 815 631 938 166 962
147 696 738 563 874 322 484 811 419 674 912 830 653 423 587 781

962 226 982 80 703 712 519 ,/

Anrop av
Ange tal som programmet ska sdka efter: 519 Search.
Det sokta talet 519 dr det 200:e elementet bland talen ovan.| MySearch()

| programmet SearchTest:s Main () -metod finns bara anrop av tva metoder samt
definition av deras aktuella parametrar och inlasning av det sokta talet. En array av
int har definierats med 200 element och tilldelats referensen intarray. | anrops-
satsen RandArray.Rand(r, intArray, a, b); skickas arrayen till metoden.
Det anmérkningsvérda ar foljande: Né&r arrayen intArray som aktuell parameter i
anropet overfors till den formella parametern no i metoden RandArray.Rand (),
ar den definierad och default-initierad till 0-vérden. Faktum &r att, nér parametern
ar en array, sa anvands en metod for parameteroverforing dér den aktuella paramet-
ern intArray, och den formella parametern no, behandlas som endast tva olika
referenser till ett och samma minnesomrade, dvs till en och samma fysisk array.
Metoden kallas for referensanrop. Med intaArray definierar vi arrayen i Main ()
och anropar RandArray.Rand (). Med no tilldelar vi samma array i metoden
RandArray.Rand () slumpvdrden som Overskriver arrayens default-vérden. En
sadan “arbetsdelning” mellan olika metoder kan endast géras med referensanrop.

Efter anropet av slumpmetoden l&ses in ett varde till variabeln searchedNo som
tillsammans med arrayen intArray skickas till metoden search.MySearch().
Nar MySearch() anropas ar arrayen intArray béade definierad och tilldelad
slumpvirden. S6kmetoden far alltsa slumptalsvarden som 6verfors till den formella
parametern t. Vid sidan om no &r t nu en till minnescell som lagrar arrayen int-
Array:s adress i detta program. Aven den har parameteréverforingen sker med re-
ferensanrop. Vid anropet skickas inte vardena i arrayelementen till metoden utan
endast adressen som lagras i intArray. | sjalva verket ar det arrayens adress som
overfors till Mysearch (), tas emot av t och anvands sedan i sokmetoden for att
hitta det sokta talet i arrayen:

118

// Search.cs

// Metoden MySearch () tar emot tva parametrar: arrayen t och
// heltalet s, det sdkta elementet. Séker efter den foérsta
// férekomsten av s bland arrayelementen.

using System;

class Search

{ public static void MySearch(int[] t, int s)
{
int i;
for (i = 0; i < t.Length; i++) // Séker igenom array t
if (t[i] == s) // SO6kkriteriet
Console.WriteLine ("\n\tDet sdkta talet " + t[i] +
" dar det " + (i+l) + ":e elementet" +
" bland talen ovan.\n\n") ;
break; // Bryter for-satsen
} // ndr det sbkta hittats
if (i == t.Length)
Console.WriteLine ("\n\tDet sékta talet finns ej " +
"bland talen ovan.\n\n") ;
}
}

Det sokta talet skickas med den aktuella parametern searchedNo och tas emot av
den formella parametern s. Nu ska vi titta pd vad void-metoden MySearch ()
egentligen gor och hur den hittar eller inte hittar det sokta talet. Arrayen och det
sokta talet ar givna. Fragan ar: finns det sokta talet i arrayen? Om ja, pa vilken po-
sition? Algoritmen ar véldigt rak och enkel och kallas for linjar sékalgoritm:

1. Gaigenom alla element i arrayen dvs sok igenom arrayen t fran borjan till
slutet (linjar sokning).

2. Jamfor varje element med det sokta talet. Finns likhet med nagot element,
skriv ut ett hittat-meddelande samt elementets position som &r lika med index
+ 1. Har du hittat en likhet avbryt sékningen.

3. Har du gatt igenom alla arrayelement utan att hitta ndgon likhet skriv ut ett ej-
hittat-meddelande.

Denna algoritm hittar endast den forsta forekomsten av det sokta talet i arrayen och
tar inte hansyn till att det ev. kan finnas flera exemplar av det sokta talet i arrayen.
Progammeringstekniskt har vi dversatt algoritmens punkt 1 till C#-kod genom att i
metoden MySearch () skriva en for-sats som soker igenom arrayen t fran index
0 till t.Length-1. | denna for-sats finns en if-sats som implementerar algorit-
mens punkt 2 och i sin tur innehaller tva satser: Hittat-meddelandet och break-
satsen. En break-sats avbryter alltid den loop eller den switch-sats i vilken den
star, hér alltsa for-satsen. Det ar den som enligt anvisningen i punkt 2 gor att pro-
grammet endast hittar den forsta forekomsten av det sokta talet i arrayen. | punkt

119

3:s implementering — den sista i£-satsen i MySearch () — utnyttjar vi att for-sat-
sens réknare i dr vél definierad &ven efter for-satsen och att den har kvar det vér-
de den fick dar. Om sokningen gétt igenom alla arrayelement utan att hitta nagot
element som ar lika med det sokta talet, har for-satsens raknare i natt vérdet
t.Length eftersom detta ar forsta vardet som inte uppfyller £or-satsens villkor i
< t.Length. | detta fall avslutas for-satsen utan break sa att villkoret till den
efterfoljande i£-satsen blir uppfyllt och skriver ut ett Ej-hittat-meddelande.

Bubbelsortering

Sokning i och sortering av stora datamangder ar klassiska tillampningar fér sam-
mansatta datatyper, speciellt for arrays. Medan sokning i forra exemplet baserades
pa en linjar algoritm, bygger sortering pa en ny algoritm, dven om den har vissa
likheter med s6kning. Vi ska fortsatta kapitlet om arrays med en sorteringsalgoritm
som ar en vidareutveckling av algoritmen for platsbyte av tva varden. Vi har i
programmet MiniSort (sid 44) anvant denna algoritm pa tva tecken:

if (charl > char2)

{
temp = charl;
charl = char2;
char2 = temp;
}

Om tecknen star i fel ordning ska de byta plats. For att gora det laggs charl:s
vérde undan i en tredje, temporér variabel temp. Sedan tar vi char2:s vérde och
lagger det i charl. Till sist l&ggs vérdet i temp (som ju har mellanlagrat char1:s
varde) in i char2. lllustrationen pa sid 44 bor underlatta forstaelsen av denna pro-
cess. | sjalva verket beskriver den en algoritm for sortering av tva vérden. For att
utvidga algoritmen till flera varden kopplar vi den till den linjara stkalgoritmen
som vi anvénde for sokning. Principen dér var en if-sats inbakad i en for-sats.
for-satsen soker igenom vardena i en array och if-satsen innehaller sokkriteriet.
Nar det galler sortering maste i £-satsen istallet byta plats pa tva varden om de star
i fel ordning. Denna if-sats har vi ju redan skrivit for tva tecken (se ovan). Det
géller bara att formulera den for tva arrayelement och stoppa in den i en £or-sats:
for (i=0; i<n-1; i++)
if (t[i] > t[i+1])

{
temp = t[i];
t[i] = t[i+1];
t[i+1l] = temp;
}

dar t ar en array som innehaller vardena som ska sorteras och n antalet element i
arrayen. Nar tva pd varandra foljande arrayelement £[i] och t[i+1] Star i o6ns-
kad ordning ska de byta plats dar i genomldper alla index. Man skulle kunna tro
att problemet vore l6st med detta. Men eftersom if-satsen endast testar om tva
grannvarden stér i fel ordning och byter sedan plats p& dem, racker koden ovan in-

120

te till att sortera arrayen fullstandigt, &ven om for-satsen soker igenom hela arra-
yen. Jamforelsen mellan tva grannvarden tar inte hansyn till varden som star langre
bort. Om man tillampar koden ovan pa en array av 20 heltal som med metoden
RandArray.Rand () ar utvalda ur intervallet [1, 100] far man féljande resultat:

20 heltal mellan 1 och 100 slumpas fram:
75 2 24 94 30 88 10 42 50 54 27 47 45 83 34 86 67 66 14 14
De 20 slumptalen efter koden ovan:

2 24 75 30 88 10 42 50 54 27 47 45 83 34 86 67 66 14 14 94

Resultatet visar att sorteringen inte ar klar, men att vi ar pa ratt vag. Arrayen ar del-
vis sorterad. Bara om tva grannvarden stod i fel ordning har de bytt plats och detta
har gjorts I6pande genom hela arrayen. Denna delsortering kallas for ett pass i en
sorteringsalgoritm som ar kand under beteckningen bubbelsortering. For att uppna
en fullstandig sortering maste detta pass upprepas flera ganger vilket innebar att
lagga in ovanstaende for-sats i en ny for-sats som gar igenom flera pass. | varje
pass kommer en del vérden att placera sig i réatt ordning. Metoden kan jamféras
med luftbubblor i vattnet som sa smaningom stiger upp till vattenytan. Ddrav nam-
net bubbelsortering vars algoritm &r implementerad i féljande void-metod:

// Bubble.cs

// Sorterar heltal lagrade 1 arrayen t med en algoritm

// (bubbelsortering) som baseras pd algoritmen fér plats-—
// byte av tva objekt 1 programmet MiniSort (sid 44)
using System;

class Bubble

{ public static void sort(int[] t)
{ -
int temp;
for (int pass=0; pass<t.Length-1; pass++)
for (int i=0; i<t.Length-1; i++)
if (t[i] > t[i+1]) // Sortering i stigande
{ // ordning
temp = t[i]; // Algoritm fér platsbyte
t[i] = t[i+1]; // av tva grannelement:
t[i+l] = temp; // t[i] och t[i+1]
Console.WriteLine("\tDe " + t.Length +
" slumptalen efter sortering:");
Console.Write ("\n\t") ;
for (int i=0; i < t.Length; i++) // Sorterad utskrift
Console.Write(t[i] + " ")
Console.WriteLine ("\n\n") ;
}
}

121

Bubbelsorteringsalgoritmen bestéar alltsd av en if-sats inbakad i en nastlad for-
sats dar if-satsen implementerar algoritmen for platsbyte av tva varden. Den inre
for-satsen soker igenom arrayelementen, utfor ett sorteringspass och den yttre
for-satsen upprepar sorteringspassen. Metoden sort () har arrayen t som ska
sorteras som parameter och anvénds i den inre for-satsen. Den anropas fran
Main () i féljande program efter definitionen av arrayen intArray och dess till-
delning i metoden RandArray.Rand():

// BubbleTest.cs
using System;

class BubbleTest

{
static void Main ()
{
Random r = new Random() ;
int a =1, b = 100;
int[] intArray = new int[17];
RandArray.Rand(r, intArray, a, b);
Bubble.sort (intArray) ;
}
}

En korning av programmet BubbleTest Visar att sorteringen nu genomforts full-
standigt:

17 heltal mellan 1 och 100 slumpas fram:

23 76 23 31 67 94 79 38 46 10 85 100 87 61 17 71 14

De 17 slumptalen efter sortering:

10 14 17 23 23 31 38 46 61 67 71 76 79 85 87 94 100

Andra algoritmer

Som en sista anmarkning till kapitlet sékning och sortering bor papekas att de algo-
ritmer som avhandlats hér, ar enkla och elementéra. De &r daremot inte de mest
effektiva nér det géller att minimera antalet operationer och maximera snabbheten.
Det finns effektivare (och mer komplicerade) algoritmer bade nar det galler sok-
ning och sortering som vi inte tar upp hér. Vi ndmner bara en algoritm som kallas
binarsokning som heter sa for att den i varje steg halverar arrayen man ska soka i.
Den behdver ett mindre antal operationer och dr darmed snabbare. N&r det galler
sortering finns den effektiva algoritmen Quicksort som bygger pa rekursion. Re-
kursiva metoder &r metoder som anropar sig sjalva — ett alternativ till repetition
(loopar).

122

3.9 Generiska metoder

I programmering &r variabler > platshallare for varden.
I generiska metoder kan variabler dven anvandas som platshallare for datatyper.

Generiska metoder ar metoder vars parametrar har variabla datatyper.
Ex.: I metoden public static void G_out <T>(T[] t) &r
parametern t &r en array av typ T dar T ar en platshdllare for datatyper.
Den variabla datatypen T (Type) definieras med <T> och kan anvandas
istdllet for vilken datatyp som helst: int, double, char, string,

I generiska metoder &r de formella parametrarnas datatyper inte specifierade. De
bestdms forst ndr metoderna anropas, ndrmare bestdmt av de aktuella parameternas
datatyper. Detta innebér en generalisering som kallas fér Generics som dven kan
tillampas pa klasser. Man kan skriva ETT program fér manga tillampningar.

Generics

I de flesta programmeringsspréken har man infort Generics som ett tillagg till stan-
darden forst i de nyare versioner av spraket. T.ex. i C++ kom motsvarigheten till
generics forst pa 90-talet och kallades for Templates. | Java introducerades generics
2004. | C# har det funnits stod for Generics sedan 2005.

Genom att anvanda Generics behdver man inte langre skriva olika varianter av ett
program som i praktiken léser (ndstan) samma problem. Dessa skiljer sig program-
meringstekniskt endast i datatypen till de involverade parametrarna. Alla dessa
varianter kan forenas i ett och samma — numera generiskt — program i vilka dataty-
perna &r variabler. Lat oss saga, vi vill skriva ett program for sortering av olika
slags objekt. Det kan handla om sortering av heltal, decimaltal, bokstéver, strangar,
eller Sorteringsalgoritmen till alls dessa program &r den samma oavsett man
sorterar heltal, decimaltal, bokstéver eller strdngar. Metoden som implementerar al-
goritmen skrivs da generiskt, dvs med variabla datatyper, sa att den kan anvandas
for att sortera olika typer av objekt beroende pa i vilket syfte den anropas. Lét 0ss
titta pa foljande exempel:

// G_Output.cs

// Generisk metod G out <>() skriver ut en array av variabel
// datatyp T som kan vara int, double, char eller string.

// foreach loopar igenom och skriver ut listans alla element
using System;

using System.Collections.Generic;

class G _Output

public static void G_out <T>(T[] t)

{

123

Console.Write("\t");

foreach (T element in t)
Console.Write (element + " ");

Console.WriteLine ("\n") ;

}

Det som gor att metoden G_out <> () ovan som &r definierad i klassen G_output
ar generisk ar den annorlunda syntaxen i metodhuvudet:

public static void G_out <T>(T[] t)

Till skillnad fran vanliga metoder har denna metod tva parameterlistor. Den ena ar
den vanliga med runda parenteser (T[] t) som innehaller parametern t, bara att
dess datatyp &r en array av T. Den andra ar den “generiska parameterlistan” <T>
dar T definieras som en formell parameter for en datatyp som bestdms nar metoden
anropas, t.ex. s har: G_output.G_out (hel) ; T far den datatyp som i det anro-
pande programmet har tilldelats variabeln hel. Har vi t.ex. definierat hel som en
int, sa antar den formella parametern T den aktuella parametern int. | generiska
metoder finns det alltid en sddan typ-parameter. | det program dar vi testar
generiska metoder, anropas G_out <> () fyra ganger, varje gang med en annan da-
tatyp, narmare bestdmt med int, double, char och string. Med hjélp av dessa
bildas sedan med koden T[] arrays av int, double, char och string. Den van-
liga parametern t definieras d@ med koden T[] t till sddana arrays. Har foljer nu
det program som testar och anropar tva generiska metoder:

// GenericTest.cs

// Testar de generiska metoderna G out <>() och G sort <>()
// Skapar 4 arrays av olika typer: int, double, char, string
// och skickar dem till G out <>() fér utskrift och till

// G_sort <>() fér sortering

// Generiska metoderna anropas som vanliga metoder

// Utskrift sker fére och efter sortering

using System;

class GenericTest

{

static void Main()
d int[] hel = { 9, 7, 2, 1, 8, 5, 4, 3, 6 };
double[] deci =
{ 9.9, 7.7, 2.2, 1.1, 8.8, 5.5, 4.4, 3.3, 6.6 };
char[] boks = {lhl,lcl,lfl,lal,lel, 'i', lbl, 'd', lgl};
string[] text = {"zeta",6"beta","gamma", "psi", "alpha"}
Console.Writeline (
"\n\tOlika datatyper skrivs ut med samma generiska" +
" metod \n\tFORE SORTERING:\n"); // Osorterad utskrift
G_Output.G_out (hel) ; // Anrop av generisk
G_Output.G_out(deci); // metod G out <>()
G_Output.G_out (boks) ;

’

124

G_Output.G_out (text);
Console.Writeline (
"\tDe olika typerna sorteras med samma generisk metod") ;

G_Bubble.G_sort (hel) ; // Sortering: Anrop
G_Bubble.G_sort(deci) ; // av generisk metod
G_Bubble.G_sort (boks) ; // G sort <>()

G_Bubble.G_sort(text);
Console.WriteLine ("\toch skrivs ut EFTER SORTERING:\n") ;
G_Output.G_out (hel); // Sorterad utskrift
G_Output.G_out(deci) ;
G_Output.G_out (boks) ;
G_Output.G_out (text);

}

Den vitmarkerade koden visar fyra anrop av den generiska metoden G_out <> ().
Det anmarkningsvarda ar att dessa anrop inte skiljer sig alls fran anrop av vanliga
metoder. De aktuella parametrarna hel, deci, boks och text ar definierade som
arrays av int, double, char resp. string och skickar, nar de anropas, inte bara
sina vanliga varden — heltalen, decimaltalen, bokstaverna och strangarna — till de
anropade metoderna, utan dven sina datatyper. Medan de vanliga vardena i resp.
array gar till den formella parametern t i resp. metods runda parameterlista, gar da-
tatyperna arrays av int, double, char 0Ch string till parametern T i resp. me-
tods “generiska” parameterlista <T>. Ddrmed blir varje datatyp specificerad och in-
satt pa alla stallen dar T star i den generiska metoden, vare sig i huvudet eller i
kroppen. S& har blir resultatet av en kdrning av programmet GenericTest:

Olika datatyper skrivs ut med samma generiska metod
FORE SORTERING:

9 7 2 1 8 5 4 3 6

9,9 7,7 2,2 1,1 8,8 5,5 4,4 3,3 6,6
h ¢ £ a e i b d g

zeta beta gamma psi alpha

De olika typerna sorteras med samma generiska metod
och skrivs ut EFTER SORTERING:

1 2 3 4 5 6 7 8 9
1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8 9,9
a b c d e £ g h i

alpha beta gamma psi zeta

125

Som man ser har heltalen, decimaltalen, bokstaverna och strangarna dvs vardena i
de fyra olika arrays skrivits ut som ett resultat av de vitmarkerade anropen i pro-
grammet GenericTest pa forra sidan. Alla fyra anrop har gétt till en och samma
generisk metod G_out <> () (sid 123) som skriver ut dem. Visserligen behéver man
skriva fyra olika anrop i programmet GenericTest. Men man behover definiera
och koda sjélva metoden bara en gang, vilket innebér en stor effektivitet i utveck-
lingsarbetet.

Generisk bubbelsortering

Men korresultatet ovan har ocksd andra delar, precis som sjélva programmet Ge-
nericTest. Efter att vérdena skrivits ut skickas de till en annan generisk metod
som sorterar dem. Detta gors i GenericTest med anropen:

G_Bubble.G_sort(hel);

G_Bubble.G_sort(deci) ;
G_Bubble.G_sort (boks) ;
G_Bubble.G_sort(text);

Aven dessa anrop kan man inte skilja frén anrop till vanliga metoder, fast metoden
G_sort <> () dr generisk. Efter sorteringen skickas arrayvardena igen till utskrift,
sd att vi ser dem sorterade i utskriften ovan — och detta sker inte bara for hel- och
decimaltalen samt bokstéverna utan dven for strangarna. Aven har anvander vi 0ss
av en enda generisk metod som vi nu ska titta narmare pa:

// G_Bubble.cs

// Genersik metod G_sort <>() sorterar en array av variabel
// datatyp T som kan vara int, double, char eller string
using System;

using System.Collections.Generic;

class G_Bubble

{ public static void G_sort <T>(T[] t) where T
IComparable<T>
{ // Krdvs fér CompareTo ()
T temp;
for (int pass=0; pass<t.Length-1; pass++)
for (int i=0; i<t.Length-1; i++)
if (t[i].CompareTo(t[i + 11) > 0) // Om t[i] >
t[i+1]
{ // Sortering 1 sti-
temp = t[i]; // gande ordning
t[i] = t[i + 1]; // Algoritm fér
t[i+l] = temp; // platsbyte
}
}
}

126

Metoden G_sort <>() iklassen G_Bubble &r en generisk variant av den vanliga
metoden sort () i klassen Bubble som presenterades nér vi behandlade sékning
och sortering. Hér géller samma som vi sa om metoden G_out <>(): Den gene-
riska formella parametern T star for datatyper som ar kopplade till den aktuella an-
ropsparametern som skickas till den vanliga formella parametern t, dvs for data-
typerna till de objekt som ska sorteras.

Constraints

Till skillnad frdn G_out <>() har vi i den generiska metoden G_sort <>() ett
tilldgg i metodhuvudet:

public static void G_sort <T>(T[] t) where T : IComparable<T>

Tilligget where T : IComparable<T> dr en S.k. constraint, dvs en restriktion
som laggs péa T. Den ar nodvandig eftersom vi i metodens kropp anvander oss av
ett villkor i if-satsens huvud som ska jamfora tva pa varandra foljande element i

arrayen:
if (t[i].CompareTo(t[i + 1]) > 0)

Motsvarigheten till detta i den vanliga icke-generiska metoden sort () ar:
if (t[i] > t[i + 1])

Anledningen till att denna kod inte fungerar i den generiska metoden &r att vi inte
langre har att géra med en array av int vars element ska jamféras med varandra,
utan med en generaliserad datatyp T som kan vara vilken datatyp som helst. Hur
ska koden avgora sanningsvardet till ett sddant villkor om T &r t.ex. en strang?
Sjalvfallet maste den ta strangarnas begynnelsebokstaver och jamfara deras ASCII-
koder med varandra for att avgdra vilken som ar storre. Men en sadan “intelligens”
finns inte automatikst inlagd i den generaliserade datatypen T, utan den &r férpro-
grammerad i metoden CompareTo (). FOr att kunna &t denna kod maste T arva
denna metod som i sin tur finns i Interfacet IComparable<>. Darfor maste fol-
jande tillagg skrivas i huvudet till metoden G_sort <>():

where T : IComparable<T>
Annars kan vi inte kompilera i£-villkoret (t[i].CompareTo (t[i +1]) >0) .

Det enklare alternativet t[i] > t[i + 1] som betyder samma sak, fungerar inte
heller nar vi arbetar med den generaliserade datatypen T istéllet for med int eller
en annan specifik datatyp.

I generisk programmering kallas konstruktionen where T : IComparable<T> €n
constraint dvs en restriktion som man lagger pa T. Just denna constraint innebar att
data av typ T ska vara jamforbara. Man ska kunna anvénda jamforelseoperatorerna
>, <, == 0sv. pa dem. Interfacet Icomparable<> innehaller ett antal fordefinierade
metoder som implementerar denna mojlighet.

127

3.10 Listor

Listor ar dynamiska arrays. Datastrukturen array har manga fordelar nar det galler
hantering av stora datamangder, men ocksa en stor nackdel, namligen att man i
forvag maste ange storleken pa arrayen utan att ha méjligheten att dndra den vid
behov under programmets gang, s.k. statisk minnesallokering, dvs minnesutrym-
mets storlek bestdms nar man definierar arrayen. N&ar koden kompileras reserveras
minne av den angivna storleken som inte langre kan andras under exekveringen.
Anta att vi vill ha ett program som l&ser data, t.ex. laddar ned text, bild eller ljud —
fran nagon kalla, sag en fil, och vi vet inte hur mycket data filen innehaller, nar vi
skriver kod. Darfor kan en array inte klara av den har uppgiften. Nar man l&ser data
fran en fil ska minnesallokeringen helst goras samtidigt som filen lases under
programmets korning. Man vill helst lasa in data till ett C#-program utan att pa
férhand behdva ange dess storlek. Losningen vore dynamisk minnesallokering, dvs
minnesutrymmet kan uttkas efter behov under programmets exekvering. En slags
dynamisk array behovs. Och just en sadan dynamisk array ar den nya datastruktur-
en List som vi ska stifta bekantskap med i detta avsnitt. List &r inte bara dyna-
misk utan har &ven en mangd fordefinierade kraftfulla metoder som sorterar, soker
i eller pa annat satt manipulerar listor, s att man sjalv inte behéver koda s& myc-
ket. | denna bemarkelse &r listor béattre arrays.

Foljande program visar ett exempel pa denna nya datastruktur:

// Lista.cs

// Skapar en lista och skickar den till metoden RandL () d&ar
// den fylls med slumptal. Listan skickas vidare till List-
// metoden Sort () ddr den sorteras. Utskrift sker fére +

// efter sortering.

using System;

using System.Collections.Generic; // Krdvs fér List
class Lista // OBS! INTE List
{
static void Main()
‘ List<int> intList = new List<int>(); // List-objekt
Random r = new Random() ; // av int
int a =1, b = 1000;
Console.WriteLine ("\n\tl1l00 heltal mellan " + a +
" och " + b + " slumpas till ett List-objekt:\n");
RandList.RandL(r, intList, a, b); // Slumptilldelning
Print.Out (intList) ; // Osorterad utskrift
intList.Sort() ; // List-sortering
Console.WriteLine (
"\tHeltalen sorteras med List-metoden Sort():\n"):;
Print.Out (intList) ; // Sorterad utskrift
}

128

Klassen List

Klassen List ar fordefinierad i C#-biblioteket System.Collectins.Genetric.
For att anvanda listor maste vi skapa ett objekt av denna klass. Det gér man med

satsen:
List<int> intList = new List<int>();

Variabeln som refererar till det nya objektet kallar vi intList. Det speciella med
klassen List &r att den maste kopplas till en datatyp. Har ar den kopplad till int,
dvs klassen heter egentligen List<int>. Vi har skapat en lista av int, ganska lik-
nande en array av int, bara att vi nu inte behdver ange antal element. Det &r just
det dynamiska i listor till skillnad fran arrays. Som en konsekvens far vi tilldela till
en lista av int ocksa bara heltal av typ int. Varje forsok att tilldela till den andra
an int-vdrden kommer att leda till kompileringsfel. Man kan forstds skapa dven
objekt av listor av alla andra datatyper inkl. andra klasser. Har man t.ex. definierat
en klass Person kan man med List<Person> p = new List<Person>();
skapa en lista 6ver personer. p refererar da till ett objekt av typ List<Person>.
Varje element i denna lista &r i sin tur ett objekt av typ Person.

Listan intList vi skapat ovan &r just nu tom. Den blir inte heller tilldelad i koden
pa forra sidan. For att fylla den med vérden skickar vi den som parameter till
metoden RandL () som vi definierar i klassen RandList:!

// RandList.cs

// Metod RandL () slumpar fram heltal mellan a och b och
// lagrar dem i ett List-objekt med List-metoden Add ()
using System;

using System.Collections.Generic;

class RandList

{
public static void RandL(Random r, List<int> no, int a,
int b)
{
for (int i=0; i < 100; i++) // Har fylls listan
no.Add(r.Next(a, b)) ; // med slumptal
}
}

Deklarationen av parametern i metoden RandL () :s parameterlista sker med koden
List<int> no. Namnet no pa den formella parametern &r ovéasentligt. Eftersom
referensanrop tilliampas, pekar no i alla fall pa samma objekt som intList dvs
den lista som skapades i Main (). Sa fyller vi den i £or-satsen med 100 slumptal
genererade av den gamla Rand () -metod som vi anvant tidigare och som i varje
varv skapar ett slumptal mellan a och b (1 och 1000). For att placera dem i listan
anvander vi oss av metoden add () som ar definierad i klassen List, darfér anro-
pet no.Add (). Varje anrop infogar ett slumptal i listan. Vi behover inte ange i for-
vag hur lang listan ska vara. Den ar éppen och vaxer vid behov. Det ar fordelen

129

med dynamiska arrays som tillhandahalls i klassen List. Slumptalsgenererings-
metoden Next () anropas i Add ()-metodens parameterlista med r.Next (a, b)
som éar definierad i biblioteksklassen Random.

Vi har &ven modulariserat utskriftsproceduren med all layout som tillhér den, i me-
toden out () i den externa klassen print som ser ut s& har:

// Print.cs

// Metoden Out () skriver ut en lista med en foreach-sats som
// loopar igenom listans ALLA element

using System;

using System.Collections.Generic;

class Print

public static void Out (List<int> t)

{
Console.Write ("\t");
int i = 1;
foreach (int element in t)
{
Console.Write (element + " ") ;
if (i % 14 == 0) // Radbyte var
Console.Write ("\n\t") ; // 14:e utskrift
i++;
}
Console.WriteLine ("\n") ;
}

}

I metodens huvud valjs namnet t for den formella parametern. Eftersom metodens
anrop i Main () sker med den aktuella parametern intList, pekar t pd samma lis-
ta som intList. Darfor skrivs ut listans innehall — de 100 slumptalen — nar out ()
anropas forsta gangen direkt efter att listan blivit tilldelad i Rand () -metoden. An-
dra gangen sker anropet efter sorteringen. All utskrift i out () sker med hjalp av en
kontrollstruktur som &r typisk for listor och arrays och som inleds med det reserve-
rade ordet foreach.

foreach-satsen i listor

Det 4r en kontrollstruktur som behandlades tidigare, fast da var det i samband med
array. Nu anvénds foreach med listor. Skillnaden &r dock obetydlig. | klassen
Print (ovan) ser huvudet till foreach-satsen ut sa har:

foreach (int element in t)
Oversatt till svenska:
For varje element av listan t gor:

130

Iterationsvariabeln element definieras till int. Men till skillnad frdn £ox-satsens
raknare & element inget index (nr) i listan utan en variabel som pekar pa sjalva
vardet (innehallet) som star i listan. t &r en referens till listan som ska loopas
igenom. foreach-satsen gar igenom listans alla element, fran det forsta till det
sista. Variabeln element som i varje varv pekar pa resp. listelementets vérde,
anvands sedan i loopens kropp for att gora det man onskar. | vart exempel satts den
i foljande anrop for att skriva ut listans element foljt av ett mellanslag:

Console.Write (element + " ");

Mellanslaget samt resten av koden i metoden out () ar till for att f en snygg
layout i utskriften. Raknaren i som vi sjalva definierar, haller reda pé loopens varv
och ger oss mojligheten att i foljande i£-sats infoga ett radbyte samt tabulator var
14:e utskrift utom i den allra forsta:

if (i % 14 == 0)
Console.Write ("\n\t") ;

Antligen kan vi testa programmet Lista som kan resultera i féljande utskrift:

100 heltal mellan 1 och 1000 slumpas till ett List-objekt:

378 297 220 134 803 115 218 227 346 300 508 559 845 872 417
829 559 105 477 869 602 493 117 713 541 92 572 988 796

982 184 431 259 39 566 724 465 722 14 817 235 751 446

256 650 231 413 914 907 297 464 943 557 957 999 533 181

155 594 359 191 231 79 365 764 725 948 454 307 341 12

485 739 661 635 852 695 862 711 958 680 659 729 147 166

242 522 303 688 681 544 958 129 656 274 652 320 82 493

573

Heltalen sorteras med List-metoden Sort():

12 14 39 79 82 92 105 115 117 129 134 147 155 166 181
184 191 218 220 227 231 231 235 242 256 259 274 297 297
300 303 307 320 341 346 359 365 378 413 417 431 446 454
464 465 477 485 493 493 508 522 533 541 544 557 559 559
566 572 573 594 602 635 650 652 656 659 661 680 681 688
695 711 713 722 724 725 729 739 751 764 796 803 817 829
845 852 862 869 872 907 914 943 948 957 958 958 982 988
999

”Kan resultera”, dérfor att det blir andra siffror i varje kdrning pga at det ar slump-
tal som genereras och som &r olika varje gdng man kor programmet. Sorteringen
gors i programmet Lista:s anrop (sid 128) av metoden Sort () som &r fordefinie-
rad i klassen List.

131

Ovningar till kap 3

Modifiera klassen Fish (sid 106) sa har: Deklarera datamedlemmarna som
private och metoderna som public. Forse klassen med ytterligare tva
publika metoder, s att den nya klassen Fish_priv har foljande utseende:

using System;
class Fish priv

{
private string sort;
private float weight, size;
public Fish priv(string S, float w, float s)
{
sort = S;
weight = w;
size =s;
}
public int Price()
{
return (int) Math.Round(weight * 7.25f / 100);
}
public int Shipping()
{
return (int) Math.Round(weight * 0.02f + size * 0.1f);
}
public string AsString()
{
return sort + "\t " +
weight + "\t\t " + size + "\t\t " +
Price() + "\t " + Shipping() + "\n" 8
}
}

Modifiera programmet ArrayofRef (sid 107) sa att det modifierade pro-
grammet gor samma sak som det ursprungliga.

Skriv ett program som laser in 10 heltal fran konsolen, lagrar dem i en array
och skriver ut dem i omvénd ordning.

Skriv ett program som laser in text i gemener, lagrar den i en array av char
och skriver ut den framhdvd i versaler och med mellanslag mellan varje tec-
ken.

Skriv ett program som fragar efter anvandarens for- och efternamn, halsar
sedan anvandaren i en utskrift med fullstindiga namnet, férnamnets langd
samt efternamnets forsta och sista bokstav. Los uppgiften generellt utan att
anvinda information om nagot speciellt for- och efternamn.

132

3.5

3.6

3.7

Skriv ett program dér Main () laser in en persons fullstindiga namn och
hélsar tillbaka med namnets initialer. Dessa ska bestdmmas och skrivas ut i
en annan metod — med huvudet static void Initials(char[] name)
—SOom anropas i Main ().

Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140 (tdnkbara
hastigheter pa en motorvag), lagrar dem i en array kallad hastighet, be-
réknar och skriver ut deras medelvarde med forklarande text. Anvénd klas-
sen RandArray (sid 115) som extern modul.

Modifiera programmet Lista (sid 128) sa att sorteringen av slumptalen gors
med var egen bubbelsorteringsmetod sort () (sid 121) istallet for med den
fordefinierade List-metoden Sort(). Testa forst med array-notationen
som sort () ar skriven i. Forsok sedan att skriva om sort () till en List-
version.

133

Kapitel 4

Tillampningar

Amne Sida Program

4.1 Kryptering av strangar 135 EncryptStr
4.2 Kryptering av text, teckenvis 138 EncryptChar
4.3 Filhantering 141 WriteReadFile

- Append 144 AppendFile
4.4 Slumplésenord 146 RandPasswdTest
4.5 Kryptering av filer 150 EncryptFile
Ovningar till kapitel 4 155

134

4.1 Kryptering av strangar

| C# &r det inte sjalva objekten som skickas och fas tillbaka utan snarare deras refe-
renser, ndr man har dem i metoder. Det vore sléseri med datorns resurser (minnes-
utrymme) om man kommunicerade tunga objekt istallet for latthanterade referenser
till objekt. S&, det ar inget nytt utan snarare det normala att anvanda referenser som
foretradare for objekt. | metoden Rand (Random s, int a, int b) har vi redan
anvént objektreferenser som parametrar, dar s &r en referens till ett objekt av
klassen Random. Samma sak kan man géra med returvarden.

Referens som parameter och returvarde

Féljande klass visar ytterligare ett exempel pa en metod som har en referens t till
ett string-objekt som parameter, men dven en string-referens som returvarde.
Dessutom har den ocksd en vanlig int-parameter. Krypteringsmetoden En-
crypt () skrivs i denna klass och anropas fran Main () i klassen EncryptStr-
Test (nasta sida). Krypteringen &r véldigt enkel, men kan I4tt erséttas av mer sofis-
tikerade krypteringsalgoritmer.

// EncryptStr.cs

// Metoden Encrypt () tar emot en strdng och krypterar den ge-
// nom att férskjuta alla tecken med n steg i teckentabellen
// Den krypterade strdngen skrivs teckenvis till platsen temp
// Sedan returneras den krypterade strdngen frdn metoden
using System;

class EncryptStr

{
public static String Encrypt(String t, int n)
{
char ch;
String temp = ""; // Tom strdng
for (int i=0; i <= t.Length - 1; i++)
{
ch = t[i]; // Tar tecknen frdn t
ch = (char) (ch + n); // Andrar tecknen
temp += ch; // Liagger tecknen i temp
}
return temp; // Skriver till Encrypt
}
}

Med den forsta parametern t far metoden Encrypt () tillgang till det string-ob-
jekt som skapas i den anropande metoden Main (). Adressen till detta objekt ko-
pieras over till referensvariabeln t ndr Encrypt () anropas. Samma sak sker med
krypteringsnyckeln vars vérde kopieras till den andra parametern n. Sedan har vi i
kroppen av metoden tva lokala variabler ch och temp. Den forsta som ar av typ

135

char initieras i £or-loopen och lagrar varje tecken fran den inkommande okryp-
terade strangen t, men dven det krypterade tecknet for att slutligen dverfora det via
konkatenering till strangen temp. for-satsen gar igenom alla tecken i £ genom att
initiera sin raknare i till 0 och avsluta loopen nar raknaren har natt strangens sista
tecken. Att man borjar med o beror pa att C# raknar strangens forsta tecken med
index 0, det andra med index 1 osv. sd att det sista tecknet far t.ex. index 25 om
strangen innehéller 26 tecken. Length &r en string-egenskap som ger antalet tec-
ken i strangen, hdr t. Dé&rfor har vi i for-loopen avslutningsvillkoret i <=
t.Length - 1. | varje varv av den laggs det uttagna tecknet fran t i den lokala
char-variabeln ch och gors om till ett nytt tecken med satsen ch = (char) (ch +
n) ; dar tecknet ch:s Unicode adderas med heltalet n (teckenaritmetik). Resultatet
omvandlas med explicit typkonvertering till char for att sedan tilldelas ch och
Gverskriva dess gamla véarde. Utan explicit typkonvertering skulle vi fa kompi-
leringsfel pga C#:s vagran att automatiskt typomvandla nedat fran int till char.
for-loopens sista sats bygger den krypterade strdngen temp som efter for retur-
neras nér Encrypt () anropas i programmet EncryptStrTest:!

// EncryptStrTest.cs

// Skickar 1 ett férsta anrop strdngen text samt en slumpad
// krypteringsnyckel till metoden Encrypt () och anropar den
// en andra gdang med den krypterade texten och inverterad
// (negativ) krypteringsnyckel for att dterstdlla strdngen
using System;

class EncryptStrTest

{

static void Main()

{
String text = "abcdefghijklmnopgrstuvwxyz";
Random r = new Random() ;
int key = r.Next (50, 200); // Krypterings-—

// nyckeln

Console.WriteLine ("\n\tKryptering av text: ") ;
Console.Write ("\n\tOkrypterad text: " + text);

text = EncryptStr.Encrypt(text, key); // 1:a anropet
// krypterar
Console.Write ("\n\n\tKrypterad text: "o+
text + "\n\n\tKrypteringsnyckeln: " + key);

text = EncryptStr.Encrypt(text, -key); // 2:a anropet
// aterstdller

Console.WritelLine ("\n\n\tAterstidlld text: "o+
text + '\n'");

Ett korresultat visar foljande utskrift:

136

Kryptering av text:

Okrypterad text: abcdefghijklmnopgrstuvwxyz
Krypterad text: ¥1§70%«a-® °%23 g -, o»sku
Krypteringsnyckeln: 68

Aterstalld text: abcdefghijklmnopgrstuvwxyz

Det engelska alfabet som anvénts som teststrang har krypterats med slumpnyckeln
68 och aterstallts med -68. Bada operationer utfors i programmet ovan med anrop
av metoden Encrypt (), definierad i klassen EncryptsStr (sid 135). Det forsta an-
ropet sker med den key som anropet r.Next (50, 200) genererar, dvs ett heltals-
slumpvarde mellan 50 och 200.

Initieringen av datamedlemmen temp till en tom strdng ar nddvéndig darfor att den
sedan anvénds i satsen temp += ch; som pga den sammansatta tilldelnings-
operatorn += ar identisk med temp = temp + ch; . Darfér méste den vara initierad
nér den initialt konkateneras med char-variabeln ch som av + automatiskt typkon-
verteras till string. Aven hér &r det avgorande att skilja mellan referensen temp
och den tomma strdngen som ett String-objekt.

137

4.2 Kryptering av text, teckenvis

Vi ska nu dra lite praktisk nytta av vara samlade kunskaper om bl.a. slumptal,
ASCII-koder, array, stranghantering, metoder och referensanrop, for att med ganska
enkla medel skriva en liten applikation om Kkryptering av text. Egentligen har vi
redan skrivit en sddan, namligen klassen EncryptStr med return-metoden
Encrypt (). Men da I6stes problemet med bibliotekslkassen string. Nu ska vi
gobra det med en egen array av char och en void-metod istallet. Féljande program
laser in text som en char-array, skickar den till void-metoden Encrypt () déar
den krypteras resp. aterstélls teckenvis med ett slumptal som krypteringsnyckel.
Tekniken som anvands for kryptering & samma som i EncryptStr-metoden, fast
annu enklare i och med man arbetar pd char-niva. Ett string-objekt kan inte ma-
nipuleras pa char-niva. Nu behover strangen sjalv inte kopieras till en annan plats
utan kan pga referensanrop krypteras pa samma stalle, varfor char-programmet
behdver halften av det minnesutrymme som det gamla string-programmet be-
hévde.

// EncryptCharTest.cs

// Ldser in text som en char-array och skickar den med en

// krypteringsnyckel till metoden Encrypt () ddr den krypteras
// Referensanrop gdr den krypterade texten tillgdnglig i

// Main (). Encrypt () anropas en andra gdng med den krypterade
// texten och en inverterad (negativ) krypteringsnyckel fér
// att &terstdlla den.

using System;

class EncryptCharTest

{ static void Main()
¢ Random r = new Random() ;
int key = r.Next (50, 200) ; // Slump-krypte-
// ringsnyckeln
Console.Write ("\nSkriv text som ska krypteras:\t");
char[] text = Console.ReadLine () .ToCharArray() ;
Console.Write ("\n\tOkrypterad text:\t");
Output (text) ;
EncryptChar.Encrypt (text, key); // 1l:a anropet
// krypterar
Console.Write ("\n\n\tKrypterad text:\t\t");
Output (text) ; // text &r &ndrad
EncryptChar.Encrypt (text, -key); // 2:a anropet
// dterstdller
Console.Write ("\n\n\tAterstilld text:\t");
Output (text) ; // text dr &ndrad
Console.WriteLine ("\n\nKrypteringsnyckeln:\t\t" +
key + '\n');
}

138

static void Output (char[] a) // Metod som

{ // skriver ut
foreach (char element in a) // en array
Console.Write (element) ;

}

Med en array av char allokeras minne for texten med en maximal langd som ar
foreskriven av metoden Console.ReadLine (), ndgot antal tecken som ryms pé
en rad, kanske 80 eller lite fler. Sedan dverfors parametern text med ett forsta an-
rop av metoden Encrypt():

EncryptChar.Encrypt (text, key);

som &r definierad i klassen EncryptChar (se nedan), till metoden Encrypt(). |
detta anrop anvands automatiskt referensanrop eftersom text &r definierad som
array. Darfor &r andringarna som gors med text i metoden Encrypt (), tillgang-
liga efter anropet. Texten ar okrypterad fore och krypterad efter anropet bade i En-
crypt () och i Main (). Den andra parametern key daremot dverférs med vanligt
vardeanrop — dvs med kopiering av vdrdena — eftersom denna parameter &ar
definierad till den enkla datatypen int. Efter Encrypt () :s forsta anrop skrivs den
krypterade texten ut. Sedan anropas Encrypt () andra gangen med -key, det ne-
gativa vardet av key, for att aterstalla texten som sedan skrivs ut for kontroll. Hur
krypteringsmetoden fungerar, forstar man bast om man samtidigt tittar pa metoden
Encrypt():

// EncryptChar.cs

// Tar emot en text via arrayen t och krypterar den genom att
// férskjuta alla tecken med n steg 1 teckentabellen

// Kontrollerar textens slut med arrayegenskapen Length

class EncryptChar

{
public static void Encrypt(char[] t, int n)
for (int i = 0; i < t.Length; i++)
t[i] = (char) (t[i] + n);
}
}

Krypteringsmetoden &r valdigt enkel: tecknens ASCII-védrden gkas med n i satsen
t[i] = (char) (t[i] + n); genom vanlig addition. Att det verkligen adderas n
till AsCli-koden till £[i] beror pa att £[i] &r av typ char och att en tecken-
variabel i aritmetiska uttryck tolkas som sin ASCII-kod — ett tal man kan rékna
med. for-satsen som gér igenom hela strangen genom att koppla loopens raknare
till arrayens index, gor att hela texten forskjuts med n steg i ASCll-tabellen. n far
sitt varde genom kopiering (véardeanrop) fran key vid forsta och fran -key vid

139

andra anropet. key:s varde i sin tur slumpas fram i Main () med hjilp av Random-
metoden Next () . Dess anrop med parametrarna 1 och 501 gor att vi far ett slump-
vérde som &r ett heltal mellan 1 och 500 som sedan skickas som krypteringsnyckel
till Encrypt () via dess andra parameter. Vid andra anropet av Encrypt () skic-
kas -key for att aterstalla texten. Genom att ersitta £[i] + n med mer sofisti-
kerade formler kan man utveckla mer avancerade krypteringsalgoritmer.

Programmet EncryptCharTest kan koras pd olika sitt. Varje korning ger en
annan slumpméssig krypteringsnyckel. Har ett exempel pé en korning:

Skriv text som ska krypteras: abcdef
Okrypterad text: abcdef
Krypterad text: axceéé
Aterstalld text: abcdef

Krypteringsnyckeln: 132

Man kan kontrollera krypteringen for hand: Man ser att bokstaven a forskjutits till
a. Krypteringsnyckeln har vid denna korning varit 132. ASCII-koden till a som ar
97, har forskjutits 132 steg vidare till 97 + 132 = 229 som &r koden till tecknet &.
Darfor har a forskjutits till & med krypteringsnyckeln 132. P4 samma satt gors det
med de andra tecknen i texten abcdef£.

Sjalvklart borde i en skarp applikation krypteringsnyckeln inte skrivas ut utan en-
dast sparas i variabeln key for att anvanda den vid aterstallningen. Vi gor det har
endast for experimentens skul.

Lagger man till filhantering i programmet EncryptCharTest kan samma metod
Encrypt () anvandas for kryptering av filer.

140

4.3 Filhantering

Alla véra program hittills har haft en sak gemensam: Sa snart vi avlutat program-
korningen har all data forsvunnit fran datorn utom programmets kéllkod som vi
sparat pa harddisken. Vi har efter exekveringen inte kunnat komma &t varken pro-
grammets in- eller output. Anledningen &r att, nar vi startar kérningen, laddas béade
kallkoden och programmets variabler samt in- och utdata till datorns primarminne
RAM. Nar korningen ar avslutad ”dér” all data i RAM. Ska utdata anvandas efterét
maste den under kdrningen skickas till och sparas i filer. Samma sak galler for in-
data: Nar dess mangd &r sa stor att den inte kan matas in fran tangentbordet, maste
den lasas in fran filer. Pa sa satt kan filhantering bli en nddvandighet.

WriteReadFile.cs

Skapar filen WriteRead.txt eller Oppnar den om den finns.
Raderar gammalt innehdll om filen redan finns.

Skriver en text frdn programmet till filen, ldser den

// sedan fran samma fil och skriver ut den pd skdrmen.

using System;

using System.IO; // Krdvs fér StreamWriter
// StreamReader

class WriteReadFile

{

static void Main()

{

string word;
StreamWriter fileForWrite = new StreamWriter
("WriteRead.txt"); // Objekt av klassen StreamWriter

fileForWrite.WriteLine ("\n\t\tDenna text &r innehallet" +
" i filen WriteRead.txt."); // Skriver texten till filen
fileForWrite.Close () ; // Skriver 6ver gammalt innehall

StreamReader fileForRead = new StreamReader
("WriteRead.txt"); // Objekt av klassen StreamReader

Console.WriteLine ("\n\tFéljande text har skrivits " +
" fran programmet till filen.\n\n\t" +
"Nu lises den fran filen:\n");

while (!'fileForRead.EndOfStream) // Sa ldnge filsluts-—
{ // tecknet inte &dr natt
word = fileForRead.ReadLine(); // ska en strdng l&sas
// frdn fileForRead och
Console.WriteLine (word) ; // tilldelas word
iileForRead.Close();
Console.WriteLine('\n') ;

}

141

Programmet writeReadFile ovan skapar en fil eller 6ppnar den, om den redan
finns i projektmappen (t.ex. C:\C#MyCsConsoleProj\bin\Debug), skriver en text i den
och laser sedan texten fran filen samt visar innehéllet. Programmet inleds bl.a. med
foljande using-direktiv som behdvs for att kunna anvanda filhanteringsklasser:

using System.IO;

10 star for znput/output. De filhanteringsklasser fran C# biblioteket som anvands i
programmet &r streamWriter fOr skrivning till filer och streamReader for l&s-
ning fran filer. De innehaller metoder for skrivning till filer fran ett C# program
(output) och inlasning fran filer till ett C# program (input). Att det forsta heter out-
och det andra input beror pé att man ser pa det fran C# programmets synvinkel. D&
innebdar skrivning till fil output darfor att data gar frdn programmet till fil, medan
inlasning fran fil innebar input darfor att data gar fran fil till programmet. Utgangs-
punkten ar alltid C# programmet, inte filen.

Att skriva till en fil
| programmet WwriteReadFile definieras referensen £ileForWrite i Satsen:

StreamWriter fileForWrite = new StreamWriter ("WriteRead.txt");

Det ar en kraftfull sats. Vi ska ga igenom vad den gor: Variabeln fileForWrite
definieras som en referens till det nya objektet av klassen StreamWriter. Man
kan endast skriva ut data frdn programmet till en sadan fil, inte omvant. Utgangs-
punkten for att bestimma “riktningen” av out- och input &r som sagt alltid C# pro-
grammet: output innebar utdata fran programmet till en fil, medan input innebar in-
data fran en fil till programmet.

Men vad gor parentesen ("WriteRead.txt")? Den anropar konstruktorn till
klassen streamWriter. Observera att konstruktorns parameter tar emot en strang
varfor filnamnet maste skrivas inom citationstecken. Samtidigt som referensvaria-
beln fileForWrite definieras och tilldelas det nya Streamwriter-objektet,
initierar konstruktorn objektet till "WwriteRead. txt": Ett logiskt, dvs programme-
ringstekniskt filnamn £ileForWrite skapas och kopplas till det fysiska filnamnet
WriteRead. txt, en fil som antingen redan finns eller skapas pa héarddisken. Det
som kompilatorn gor &r att soka i projektmappens undermapp c:\C#\MyCsCon-
soleProj\bin\Debug efter en fil med detta namn. Om den finns dar kommer
satsen ovan att radera filens innehall utan férvarning nar programmet WriteRead-
File exekveras. Samtidigt satts filens markor i borjan av den tomma filen, redo
for att skriva i den. Om filen inte finns (i den ndmnda mappen) kommer satsen att
skapa en fil med namnet writeRead. txt, Sdtta markdren i borjan av filen, redo
for att skriva i den.

Referensvariabeln fileForWrite anvands sedan for att skriva till filen med:

fileForWrite.WriteLine (
"\n\t\tDenna text &r innehallet i filen WriteRead.txt.");

142

For forsta gangen anvands har metoden WriteLine () inte efter Console. dvs in-
te for att skriva ut till konsolen, utan efter filvariabeln fileForWrite. Istillet for
att skriva ut till konsolen skriver den ut till den fil som fileForWrite pekar pa,
dvs till den fysiska filen WwriteRead. txt.

Slutligen stdngs filen med fileForWrite.Close(); Metoden close() &r
definierad i den klass som fileForWrite refererar till dvs i klassen streamwri-
ter. Den explicita stangningen av filen &r av betydelse da den sétter filslutstecknet
som ar avgorande for filens korrekta ateranvandning. Nar man t.ex. senare vill lasa
fran filen anvands ofta en loop vars avslutningskriterium &r just detta filslutstecken
som representeras pd olika satt i olika operativsystem, t.ex. ctrl-z i Windows och
ctrl-d i Unix. | C# tar EndofStream reda pa om filslutstecknet ar natt eller ej. Vi
kommer att anvanda 0ss av Endo£Stream nar vi laser fran filen.

Att lasa fran en fil
| programmet WriteReadFile definieras referensen £ileForRead i satsen:;

StreamReader fileForRead = new StreamReader ("WriteRead.txt");

Ett nytt objekt skapas av klassen streamReader, fOr input. Variabeln £ileFor-
Read definieras som en referens till det nya objektet. Input innebdr att man med
det har objektet endast kan lasa data fran filen till programmet, inte omvént. Sam-
tidigt initieras objektet till filen "WriteRead. txt" — samma fil som vi skrev till i
programmets forsta del. Markoren sitts i borjan av filen, redo for att lasa fran den.
Operationerna for inlasning ar definierade i klassen streamReader medan de for
skrivning finns i StreamWriter.

Sedan anvands while for att lasa fran filen writeRead. txt och skriva det lasta

till sk&rmen:
while (!'fileForRead.EndOfStream)

{

word = fileForRead.ReadLine() ;
Console.WriteLine (word) ;

}

EndOfStream &r en datamedlem av typ bool i klassen StreamReader och far
sanningsvardet true nar filslutstecknet patraffas, annars false. Sa lange filsluts-
tecknet inte &r nétt, ska while-loopen fortsatta. Nar det ar natt ska den avslutas.
Den logiska operatorn NEGATION ! kan sattas framfor EndofStream eftersom
det &r av typ bool. Sa linge EndofStream dr false ska while-loopen leda data-
strommen fran filen £ileForRead till strangvariabeln word. Detta ar inneborden i
satsen word = fileForRead.ReadLine () ; Programmet laser data fran filen
strang for strang, dar mellanslag mellan strangarna i filen tolkas som avskiljare. In-
nan while-loopens nasta varv laser nasta strang fran filen och skriver dver varia-
beln word:s varde skickas den aktuella strangen till skarmen.

143

Efter lasning ska filen stangas pa korrekt sitt med satsen £ileForRead.clo-
se () ; aven om den inte dteranvands i detta program. En korning av WriteRead-
File ger foljande utskrift:

Foljande text har skrivits fran programmet till filen.

Nu lases den fran filen:

Denna text ar innehallet i filen WriteRead.txt.

Sedan kan man kolla att utskriftens tredje rad dven finns i filen WriteRead. txt.
Det gor man genom att ga till mappen c: \C#\MyConsoleProj\bin\Debug och
WriteRead. txt Oppna filen som finns dér.

Append

Programmet WriteReadFile innehaller i den del som skriver till filen, foljande
sats:

StreamWriter fileForWrite = new StreamWriter ("WriteRead.txt")

Om filen writeRead. txt redan finns i mappen c: \C#\MyConsoleProj\bin\-
Debug raderar satsen ovan filens innehall utan forvarning varje gang programmet
exekveras. Vill man inte ha det s, utan 6nskar att filens gamla innehall bibehalls
och det nya kommer till som ett tillagg, kan man med féljande andring astadkom-
ma detta:

StreamWriter fileForWrite = new StreamWriter ("WriteRead.txt",
append: true) ;

Andringen, dvs tillagget av 2:a parametern append: true i konstruktorns parame-
terlista gor att filen writeRead. txt Oppnas i s.k. append mode vilket innebdr att
man kan lagga till data i filen utan att radera befintlig data.

Den syntax som anvénds for konstruktorns 2:a parameter &r ny for oss:
append: true

Parametern append dr av typ bool. Dess vdrde i anropet ovan satts till true.
Detta andrar helt och hallet filskrivningens beteende: Markoren sétts inte i borjan
utan i slutet av filen. Filens gamla innehall dverskrivs inte utan sparas. Markoren
lagger till ny text till den gamla. Filen véxer. Detta beteende kan man testa i fol-
jande program:

144

// AppendFile.cs

// Oppnar filen WriteRead.txt som skapades i programmet

// WriteReadFile utan att radera filens gamla innehall.

// Ladgger till text frdn programmet till filen, ldser sedan
// hela innehallet fran samma fil och skriver ut det.

using System;

using System.IO; // Krdvs for StreamWriter och
class AppendFile // StreamReader
{

static void Main ()

{

String word;
StreamWriter fileForWrite = new StreamWriter
("WriteRead. txt", append:true);
// Objekt av klassen StreamWriter:
// Bibehdller filens gamla innehdll
fileForWrite.WriteLine ("\n\t\tDenna text har lagts till"
+ " filen WriteRead.txt.");
// Lidgger till ny text till filen
fileForWrite.Close() ;

StreamReader fileForRead = new StreamReader
("WriteRead. txt") ;
Console.WriteLine ("\n\tF6ljande text har skrivits " +
" fran programmet till filen.\n\n\t" +
"Nu lédses den fran filen:\n");
while (!fileForRead.EndOfStream)

{

word = fileForRead.ReadLine () ;
Console.WriteLine (word) ;

}

fileForRead.Close () ;
Console.WriteLine('\n') ;

}
}

Resultatet ar foljande:

Fo6ljande text har skrivits fran programmet till filen.
Nu lases den fran filen:
Denna text &dr innehallet i filen WriteRead. txt.

Denna text har lagts till filen WriteRead.txt.

Den sista raden har kommit till i och med exekveringen av programmet Append-
File medan de tre forsta raderna harstammer fran programmet WriteReadFile.

145

4.4 Slumplésenord

Det ar var och en systemadministrators onskemal att snabbt kunna fa en lista dver
ett antal anvandarnamn samt slumpvis genererade 16senord som féljer en viss poli-
cy, for att dela ut dem till sina anvandare. N&r I6senorden &r slumpade &r det prak-
tiskt taget omojligt att hantera dem utan att spara dem i en fil. Detta for att effektivt
kunna administrera och dela ut konton med anvandarnamn och I6senord till alla an-
vandare. For att kunna gora det behovs en l6senordspolicy som ingdr tex. i fol-
jande problemstallning:

Problemet:

”Skriv ett program som skriver till en fil med tva kolumner. I den forsta
ska sta nagra anvandarnamn av typ userl, user2, I den andra ska
till varje anvandare sta ett slumpvis genererat I6senord med 8 tecken,
namligen 3 sma bokstaver, 2 siffror och 3 stora bokstaver. Programmet
ska sedan visa filens innehall.”

Ldsningen:

// RandPasswdTest.cs

// Skapar en fil, skriver i den ett antal anvdndarnamn och
// slumpvis genererade l6senord med metoden RandPasswd ()
// Lidser sedan frdn samma fil och skriver ut innehdllet
using System;

using System.IO;

class RandPasswdTest

{

static void Main()
{char[] password = new char([8];
Random r = new Random() ;
string word;
Console.Write ("\n\tHur mdnga anvdndarnamn med ldsenord "
+ "vill du ha? ")
int number = Convert.ToInt32 (Console.ReadLine()) ;
StreamWriter fileForWrite = new StreamWriter
("userPasswd. txt") ;
for (int i=l1l; i <= number; i++)

RandPasswd.OnePassword (r, password); // Slumpldsenord
fileForWrite.WriteLine ("\tuser" + i + // Skrivs till fil
"\t\t" + new String(password)) ;
}

fileForWrite.Close () ;

146

StreamReader fileForRead = new StreamReader
("userPasswd. txt") ;

Console.WriteLine ("\n\tVarsidgod, detta star nu" +
" i filen userPasswd.txt:\n");
while (!'fileForRead.EndOfStream)

{

word = fileForRead.ReadLine () ; // Lidses fran fil
Console.WriteLine (word) ; // Skrivs till skdrm

}

fileForRead.Close() ;
Console.WriteLine () ;

}
}

L6sningen bestar av programmet ovan samt klassen RandPasswd pa nasta sidan. |
den forsta med vit bakgrund framhévda raden kopplar programmet RandPasswd-
Test filvariabeln f£ileForwrite till den fysiska filen "userPasswd. txt". Sa al-
la inloggningsuppgifter kommer att hamna i denna fil. |1 den andra med vit bakgrund
framhéavda raden anropas metoden EttLésenord() fran klassen RandPasswd,
vilket genererar ett slumpldsenord. Sedan skrivs till filen med féljande sats:

fileForWrite.WriteLine("\tuser" + i +
"\t\t" + new String(password)) ;

Béde anropet och denna sats &r inbyggda i en for-loop dar raknaren i gar fran 1
till number anvandare man matar in vid kdrning. Intressant ur en programmerings-
teknisk synpunkt ar nu den i satsen ovan med gra bakgrund framhévda koden.
Fragan ar: Varfor kan man inte bara enkelt skriva password i koden for att fa ut
strangen som representerar slumplésenordet som genererats av metoden onePass-
word () ? Anledningen &r att password endast ar en referens till en char-array
och inte en strang, ja inte ens sjélva arrayen. Detta kan man se nar man tittar pa den
sats som i borjan av programmet definierar password:

char[] password = new char[8];

For att fa ut den char-array som password refererar till, som en strang, maste vi
skapa ett strangobjekt med samma referens som pekar pa chaz-arrayen. Annars —
om vi bara skriver password — far vi endast ut referensen. DArfor: new String-
(password) . Testa garna for att se vad du far i utskriften.

I den tredje med vit bakgrund framhévda raden kopplar programmet RandpPass-
wdTest filvariabeln £ileForRead till en filtyp for input och initieras till samma
fil som vi skrev till. For Iasning fran filen till skarmen anvands samma while-loop
som i programmet WriteReadFile (sid 141).

Det ursprungliga malet var ju att skriva en lista éver anvandarnamn och lésenord
till filen userpPasswd. txt for att dela ut konton. Ldsenorden kan initialt vara vad

147

som helst, bara de foljer en policy med vissa sékerhetskrav. Sedan kan anvéndarna
efter den forsta inloggningen sjalva bestdmma sina individuella I6senord. Féljande
metod som i programmet RandPasswdTest anropas i samma for-sats som skri-
ver till filen, l6ser problemet. Direkt efter anropet sparas anvandarnamn och lsen-
ord i filen.

// RandPasswd.cs

// Genererar ETT slumpl&senord med policyn:

// 8 tecken = 3 smd bokstdver: ASCII-intervall (97, 122) +
// 2 siffror (48, 57) +
// 3 stora bokstdver (65, 90)
using System;

class RandPasswd

public static void OnePassword(Random r, char[] p)
{
for (int i=0; i < 3; i++)
pli] = (char) r.Next(97, (122 + 1)); // 3 sma
// bokstdver
for (int i=3; i < 5; i++)

pli] = (char) r.Next(48, (57 + 1)); // 2 siffror
for (int i=5; i < 8; i++)
pli] = (char) r.Next(65, (90 + 1)); // 3 stora
} // bokstdver

}

Metoden tar emot en array av char och tilldelar dess 3 forsta element — vars index
ar 0, 1, och 2 — tecken som slumpvis tas ur ASCIl-intervallet (97, 122). En blick i
ASClI-tabellen (Progri, 3.3) visar att det ar tecknen a, b, ¢, ..., z dvs det
engelska alfabetet i gemener. Den har tilldelningen kan goras med en for-sats
eftersom det engelska alfabetet finns sammanhéngande i ASClII-tabellen.

Det 4:e och 5:e elementet — med index 3 och 4 — tilldelas slumpvis ett tecken ur
ASClI-intervallet (48, 57). Enligt ASClI-tabellen &r det siffrorna 0-9.

De 3 sista elementen, dvs element nr 6, 7 och 8 — med index 5, 6 och 7 — tilldelas
nagot av tecknen i ASCll-intervallet (65, 90). Det ar tecknena, B, Cc, ..., 2
dvs det engelska alfabetet i versaler.

I alla intervall ingar dven granserna darfor att metoden Next () som anropas har
flera ganger, aven inkluderar intervallgranserna vid slumptalsgenereringen.

Metoden onePassword () anropas i programmet RandPasswdTest | den for-
sats som skriver till filen. Darvid skickas tvd parametrar. Den forsta ar referensen r
till Random-objektet som skapas i bdrjan av programmet. Det ar nddvéndigt for att
metoden OnePassword () ska kunna anropa Random-metoden Next () som ska-
par slumptal. Den andra parametern dr password som pekar pd en char-array av

148

ldngden 8. | metoden tas den emot av referensen p av samma typ och initieras dar.
Efter anropet ar arrayen aven initierad i Main () pga referensanrop. S& hamnar
innehéllet — ett slumpldsenord av 3 gemener, 2 siffror och 3 vesaler — i filen.

Ett korresultat av programmet RandPasswdTest kan se ut sa har:

Hur manga anvidndarnamn med l6senord vill du ha? 20

Varsagod, detta star nu i filen userPasswd.txt:

userl oya00GDB
user2 vjb54XVL
user3 zae83HHS
user4 jd184YLE
user5 tja91QGSs
user6 noe52zGC
user’ Jjgs54CDG
user8 ghs88HQX
user9 ywtl8WIJ
userlO uli71UMJ
userll wim72WSR
userl2 guj89KXG
userl3 ygp32DFN
userl4 hjvO07KCV
userl5 viz47vVsC
userlé6 ecx04MLK
userl? nbv82CET
userl8 czn80QXV
userl9 rna53KMC
user20 onfl2DAU

Samtidigt skapas filen userPasswd. txt pa harddisken i projektmappens under-
mapp C:\C#\MyProject\bin\Debug med ovanstaende listan dver 20 anvandar-
namn och lésenord som innehall. Vill man placera filen pa en annan plats pé hérd-
disken, maste i den sats som skapar filen, sokvagen till denna plats anges:

StreamWriter fileForWrite =
new StreamWriter ("C:\\ ... \\userPasswd.txt");

Sokvéagen ... maste borja med diskens enhetsbokstav om man valjer absoluta
sokvagar. Men &ven relativa sokvégar av typ ..\\userPasswd.txt & mojliga
som placerar filen t.ex. i mappen strax ovanfér den aktuella mappen. Sjalvklart
borde samma stkvdg anges senare i programmet i den sats som laser filen. Anled-
ningen till anvéndningen av \\ i sokvégen &r att \ &r reserverad for escapesekven-
sernas inledningssymbol. For sjalva tecknet \ inom en strang maste escapesekven-
sen \\ anvandas (Progri, 3.4).

149

4.5 Kryptering av filer

Tidigare behandlades kryptering av text (sid 135 och 138). De verktyg som
utvecklades dar kan med fordel anvandas for att kryptera dven filer, nu nar vi lart
oss att hantera filer. For avvéxlingens skull presenterar vi forst korresultatet av ett
filkrypteringsprogram som vi sedan tar upp och och gar igenom koden:

Okrypterad fil:

This text is coming from a file called OriginalText.txt.

The C# program EncryptFile reads it from the hard disk, encrypts
the content and writes the encrypted text to the file Encrypted.txt.
In order to test the encryption, the program decrypts the text

and writes the recovered text to the file Recovered.txt.

At the same time the content of the files are displayed.

Krypterad fil:

¢q -AnA3EAn ‘An#'s» ‘4pn Als»n n” -°3nt °°22n%A -n-Y% °¢3EA|AEA |n[X¢I>n?gniAte
pA »n?%tAC%A? -°°nA3" 2An ‘An’As»nAJ>n{ A2n? ‘Alzn3%tAC%AAn [XA]>nitle4d 24An
“%2nAA -A*AnA{°n3%tAC%A> 2nA3 EAnA%nA]*n" - °>n?%tAC%A 2 |AEA |n[X?%n*A2 *AnA
nA2AAnA]>n3%tACHA 2e4znA]*n%uAtspA” »n2 *+ACUAANA] *nA3EAn[X %2nAA -A3AnA]>
nA3#A3A3 2nA3 FAnA»NAT®n" -°3n 3#%A3A32 |AEA |n[X?AnA{°nA »>nA -»3nA]3niss
A34%Ants nA{3n’ -°3An A°n2 ‘A%° C32| [X

Aterstilld fil:

This text is coming from a file called OriginalText.txt.

The C# program EncryptFile reads it from the hard disk, encrypts
the content and writes the encrypted text to the file Encrypted.txt.
In order to test the encryption, the program decrypts the text

and writes the recovered text to the file Recovered.txt.

At the same time the content of the files are displayed.

Krypteringsnyckeln: 78

Det har &r bara ett av flera méjliga kérresultat man kan fa nar man kor programmet
EncryptFile (sid 151), darfor att krypteringsnyckeln slumpas fram och kan dérfor
vara olika vid varje korning. Just hér vid den aktuella kdrningen &r den 78. Samma
teknik anvandes nar vi krypterade text. Skillnaden dr att vi nu anvénder filer som
kélla och mal for texten som ska krypteras. Programmet EncryptFile SOm gene-
rerar utskriften ovan och visas pé nasta sida, slumpar forst fram ett heltal som an-
vands som krypteringsnyckel — vi kallar det i fortsattningen kort slumpnyckel.

Programmet EncryptFile som visas nedan, &r i hdgsta grad modulariserat och
bestar av foljande klasser:

EncryptFile innehaller Main () som anropar alla andra metoder

EncryptText metoden Encrypt () som Krypterar text
WriteFile metoden write () som skriver text till en fil
ReadShowFile metoden ReadShow () som laser en fils innehall och visar

det pa skarmen
150

//

EncryptFile.cs

Liser text fran en fil, krypterar den med en slumpnyckel,

skriver den krypterade texten till en annan fil och visar

den. Dekrypterar sedan texten och skriver den till en 3:e

fil samt visar bade den dterstdllda filen och slumpnyckeln
Slumpnyckeln ger vid varje kérning en annan kryptering

using System;
using System.IO;

class EncryptFile

{

static void Main ()

{

}

Console.WriteLine ("\n\tOkrypterad £il:\n");

string fileText = ReadShowFile.ReadShow
("OriginalText.txt") ;

Random r = new Random() ;

int key = r.Next (50, 251); // Slumpnyckeln

fileText = EncryptText.Encrypt(fileText, key);// Krypte-
// rar med slumpnyckel
WriteFile.Write (fileText, "Encrypted.txt"); // Skriver
// till filen Enc..
Console.WriteLine ("\tKrypterad £il:\n") ;
fileText = ReadShowFile.ReadShow ("Encrypted. txt") ;

fileText = EncryptText.Encrypt(fileText, -key):
// Dekrypterar med negativ slumpnyckel
WriteFile.Write (fileText, "Recovered.txt"); // Skriver

// till filen Rec..
Console.WriteLine ("\tAterstidlld £il:\n");
fileText = ReadShowFile.ReadShow ("Recovered. txt") ;

Console.WriteLine ("\tKrypteringsnyckeln:\t" + key +
"\nll) o

I Main () finns endast variabeldefinitioner och anrop av de externlagrade metoder
vilka gor det egentliga jobbet, ndmligen slumptalsgenereringen, filldsningen, filvis-
ningen, krypteringen och filskrivningen. | borjan av Main () skapas string-ob-
jektet £ileText for att lagra filens innehall. Det kan inte forutsagas hur stor filen
ar som ska krypteras, men det spelar ingen roll. Vi har forbrett en liten textfil, dopt

den

till originalText. txt och lagt den i projektmappens undermapp C:\C#\-

MyProject\bin\Debug. | féljande sats anropas metoden ReadShow () som &r
definierad i den separata klassen ReadShowFile:

string fileText = ReadShowFile.ReadShow ("OriginalText.txt") ;

151

Anropet laser filen originalText. txt och returnerar innehllet till string-ob-
jektet £ileText. Sedan later vi metoden Next () — fran biblioteksklassen Random
— generera ett slumptal mellan 50 och 250 som tilldelas variabeln key, slump-
nyckeln som anvénds vid kryptering. Dérfor skickas den tillsammans med file-
Text till Encrypt () med anropet som ingdr i foljande sats:

fileText = EncryptText.Encrypt(fileText, key):

En blick pd metoden Encrypt() Ssom ar externlagrad i klassen EncryptText
forklarar saken:

// EncryptText.cs

// Metoden Encrypt () tar emot en strdng och krypterar den

// genom att forskjuta alla tecken med n steg i teckentab.

// Den krypterade strdngen skrivs teckenvis till platsen temp
// Sedan returneras den krypterade strdngen fran metoden
using System;

class EncryptText

public static string Encrypt(string t, int n)

{ // t = filinnehdll
char ch;
string temp = ""; // Initierar temp

for (int i=0; i <= t.Length-1; i++)

ch = (char) (t[i] + n); // Andrar tecknen frdn t
temp += ch; // Lidgger tecknen 1 temp
}
return temp; // Reurnerar krypterat
} // filinneh&1l

Med den forsta parametern t far metoden Encrypt () tillgang till det string-ob-
jekt som skapas i den anropande metoden Main (). Adressen till detta objekt ko-
pieras over till referensvariabeln t ndr Encrypt () anropas. Samma sak sker med
krypteringsnyckeln vars varde kopieras till den andra parametern n. Sedan har vi i
kroppen av metoden tva lokala variabler ch och temp. Den forsta som ar av typ
char initieras i for-loopen och lagrar det krypterade tecknet for att slutligen dver-
fora det via konkatenering till strdngen temp. for-satsen gar igenom alla tecken i
t genom att initiera sin raknare i till 0 och avsluta loopen nér rdknaren har natt
strangens sista tecken. Att man borjar med 0 beror pa att C# raknar strangens forsta
tecken med index 0, det andra med index 1 osv. sa att det sista tecknet far t.ex.
index 25 om strangen innehaller 26 tecken. Length &r en string-egenskap som
ger antalet tecken i strangen, hér t. Darfor har vi i £or-loopen avslutningsvillkoret
i <= t.Length - 1. | varje varv av den laggs det uttagna tecknet fran t i den
lokala char-variabeln ch och gors om till ett nytt tecken med satsen ch = (char)

152

(t[i] + n); déar tecknet ch:s Unicode adderas med heltalet n. Resultatet om-
vandlas med explicit typkonvertering till char for att sedan tilldelas ch. Utan
explicit typkonvertering skulle vi fa kompileringsfel pga C#:s vagran att automa-
tiskt typomvandla nedat fran int till char. for-loopens sista sats bygger den
krypterade strangen temp som efter for returneras nar Encrypt () anropas tva
ganger i Main () — en gang for kryptering, en andra gang for dekryptering (fram-
havda med vit bakgrund i koden pa sid 151).

Den andra gangen anropas krypteringsmetoden i foljande sats:

fileText = EncryptText.Encrypt(fileText, -key):

dar tecknet - framfor key inte ska tolkas som bindestreck utan som det matema-
tiska fortecknet minus till variabeln key:s talvarde, dar kxey &r deklarerad som hel-
tal av typ int. Vi skickar allts3 key:s negativa varde till samma krypteringsmetod
Encrypt () for att sétta tillbaka alla tecken pa sina ursprungliga platser i ASCII-
tabellen. Den aktuella parametern xey 6vefors vid anrop till den formella parame-
tern n. NAr n far ett positivt key-vérde, okas tecknens ASCII-kod med n. Ett nega-
tivt key-varde minskar ASCII-koderna med samma belopp. Dérfor kan vi anvanda
samma metod aven for dekryptering.

Men mellan de tva anropen av Encrypt () — en gang for kryptering, en gang for
dekryptering — har vi tva andra anrop, forst:

WriteFile.Write (fileText, "Encrypted.txt");

som skriver den krypterade texten £ileText till filen Encrypted. txt. Den anro-
pade metoden write () ar definierad i den externlagrade klassen WwriteFile:

// WriteFile.cs
// Metod som skriver texten t till filen filnamn
using System.IO;

class WriteFile

public static void Write(string t, string filnamn)

{
StreamWriter fileForWrite = new StreamWriter (filnamn) ;
fileForWrite.WriteLine (t) ;
fileForWrite.Close() ;

Det andra anropet mellan de tva anropen av Encrypt () sker i satsen:

fileText = ReadShowFile.ReadShow ("Encrypted. txt") ;

153

Anropet laser den krypterade texten fran filen och visar den pa skarmen. Resultatet
kan beskadas pa sid 150 och visar att filen verkligen ar krypterad. Den anropade
Metoden Readshow () ar definierad i den externlagrade klassen ReadShowFile:

// ReadShowFile.cs

// Metod som ldser innehdllet i filen filnamn, visar det pa
// skdrmen och returnerar filinnehallet som en strdng
using System;

using System.IO;

class ReadShowFile

public static string ReadShow(string filnamn)
{
string word, temp = "";
StreamReader fileForRead = new StreamReader (filnamn) ;
while (!'fileForRead.EndOfStream)
{
word = fileForRead.ReadToEnd() ;
Console.WritelLine (word) ;
temp += word;

fileForRead.Close () ;
return temp;

Metoden ReadToEnd () i while-satsen som ar fordefinierad i klassen stream-
Reader ldser filen f£ilnamn ord for ord, lagrar innehéllet i string-variabeln
word. EndOfStream i while-satsens villkor flyttar markdren till nésta tecken i fi-
len och returnerar true om det finns ord kvar och £alse om det stéter pé filslut-
tecknet. Sa lases filen till slutet, lagras i word samt samlas i temp.

Nu aterstar beviset pa att krypteringen gjorts pa ett sétt att vi alltid har mojligheten
att aterstalla filen och att vi verkligen far filens ursprungliga skick. Efter det andra
anropet av krypteringsmetoden med negativ slumpnyckel skrivs den aterstéllda
texten till filen Recovered. txt med fdljande anrop:

WriteFile.Write(fileText, "Recovered.txt");

Och med féljande anrop ldses den aterstéllda texten fran samma fil och skrivs ut pa
skdrmen:

fileText = ReadShowFile.ReadShow ("Recovered. txt") ;

Resultatet kan beskadas i den sista delen av utskriften pa sid 150. Man ser att den
ursprungliga texten fran filen originalText.txt dr helt aterstilld. T.o.m. rad-
brytningarna ar pa plats i den aterstallda versionen, daremot inte synliga i krypte-
ringen.

154

4.1

4.2

4.3

44

45

4.6

Ovningar till kap 4

Skriv ett program som l&ser in en strang, lagrar den i en array av char och
skriver ut den baklanges. Anvéand tekniken i programmet EncryptChar-
Test (sid 138) for att omvandla den inl&sta strdngen i en array av char.

Skriv ett program som skapar en tom fil, skriver i den texten ”Den hér texten
kommer fran mitt forsta C# filhanteringsprogram” och sedan liser frén den
samt skriver ut innehallet pa skarmen. Som mall kan du ta programmet -
WriteReadFile (sid 141) och modifiera den.

Modifiera programmet fran 6vn 4.2 ovan: Istéllet for att hardkoda texten i
programmet, Ias in den sa att programmet skriver vilken inlast text som helst
till filen och laser den sedan darifran.

Varje gang man kor programmen fran dvn 4.2 eller 4.3 efter forsta gangen,
rensas och aterstalls filen och endast den senaste texten hamnar i den. Skriv
ett program som gor samma sak som 6vn 4.2 men bibehéller filens gamla
innehall och lagger till den nyinlasta texten utan att radera gammal data. Du
kan astadkomma det genom att 6ppna filen i append mode.

Modifiera klassen RandPasswd (sid 148) som genererar ett slumpldsenord,
genom att anvanda en annan, ny lésenordpolicy: 3 gemener, 2 versaler (samt
? och @) och 2 specialtecken. Testa den nya policyn i programmet Rand-
PasswdTest (sid 146) for att skriva ut de nya slumplésenorden samt tillho-
rande anvandarnamn till en fil.

Kryptering av fil (Projekt) Modifiera klassen EncryptText (sid 152)
genom att implementera féljande ny krypteringsmetod. Gor sa har:

e Do0Op om klassen EncryptText till en ny klass EncryptText New.

o D0p om krypteringsmetoden Encrypt (string t, int n) fill
Encrypt New (stringt, intk, int m).

o Definiera krypteringen i den nya metoden med funktionen y =k x + m,
dvs ersétt satsen t[i] = (char) (t[i] +n);
med t[i] = (char) (k*t[i] +m);

e Ldggtill en ny metod Decrypt (string t, int k, int m) som ska de-

kryptera tecknen med den inversa funktionen y = (x - m) / k, dvs:
t[i] = (char) ((t[i] -m)/k);

e Anropa bada metoderna fran Main () genom att skicka vérdena 3 till
och -40 till m. Krypteringsfunktionen blir d& y = 3 x - 40 och dekrypte-
ringsfunktioneny = (x + 40) / 3.

155

4.7

e | 6vrigt ska all skrivning till och lasning fran fil kodas precis som i det
ursprungliga programmet EncryptFile (sid 151).

Kryptering av databas (Projekt) Skriv ett program som Kkrypterar en
redan existerande databastabell i Access som ingar i Microsofts Office-paket
vilket forutsatter att du har tillgang till programvaran. | sa fall skapa i Ac-
cess en liten tabell, t.ex. ett adressregister 6ver dina kompisar och exportera
tabellen till en textfil av typ *.txt (Arkiv > Exportera = Filformat *.txt, ...).
Vélj vid exporten semikolonet som avskiljare mellan tabellens kolumner.
Kryptera textfilen med nagot av programmen i detta kapitel. Men lagg till
kod som gor att semikolonet inte krypteras. Skriv det krypterade innehallet
till en annan textfil. Importera textfilen till en ny tabell i Access. Spara kryp-
teringsnyckeln och anvand den for att aterstalla den krypterade tabellen och
verifiera resultatet.

156

Kapitel 5

Datastrukturer i relationsdatabaser

Amne Sida Program/Lénk
5.1 Introduktion till databaser 158
5.2 Relationsdatabaser 160
- Modularisering 160
- Liknelse med klass och objekt 162
- Vad ér en relation i databaser? 163
- Primar- och frammande nycklar 167
5.3 Introduktion till SQL 168
- Databashanterare 168
- Klient — Server-modellen 169
- SQL - databasers sprak 171
- SELECT-satsen 172
- CREATE TABLE-satsen 177
5.4 Var forsta SQL Server databas 179 FirstDatabase
- Att koppla upp sig till SQL Servern 180
- Att visa databasens innehdll 183
5.5 En SQL klient i C# 185 SQLclient
- Att skriva och exekvera egna SQL satser 187
- Grafiskt granssnitt till SQL klienten 192
5.6 Att skapa och designa en databas i C# 197 Kursverksamhet
- Modelldatabasen Kursverksamhet 198
- Att skapa tabeller i databasen 199
- Att koppla projektets Dataset till databasen 202
- Att skapa relationer mellan tabeller 205
- Att lagga in data i tabellerna 207
5.7 Att férse databasen med funktionaliteter 210 AddressBook
Ovningar till kapitel 5 216

157

5.1 Introduktion till databaser

Vad ar en databas ?

» Exempel pa databaser:
Kortregister pa kontor
Sjukvardsjournal
Bokregister pa bibliotek
Medlemsregister i en férening
Kundregister pa foretag
Eniro (Telefonkataloger)

» Databas = Organiserad samling och
lagring av information.

Information som samlas och lagras pa ett stalle for att kunna anvandas senare, ge-
nererar en databas. Stéllet dar informationen samlas behdver inte vara en dator. En
samling papper eller kort med viktig information som man férser med namn eller
nummer sé att de kan sorteras, kan géra samma tjanst. Forr i tiden forvarades sadan
information i tunga, lashara arkivskap av massiv jarn, for att sikra informationen
mot olovlig anvandning, inbrott, eld osv. (se bilden ovan). Arkivskapet kunde inne-
hélla information om t.ex. delbetalande kunders skulder i ett varuhus, sjukvards-
journal i ett sjukhus, lanebdcker i ett bibliotek, register 6ver elevarenden i en skola,
medlemsregister i en forening eller kund- resp. varuregister i ett foretag. ldag ar
databaser bakom webbsidor av stort intresse, dar uppdaterbar information lagras.

Datoriseringen har gjort att arkivskapet gatt till historien for gott. Idag finns det in-
get effektivare medium for lagring av information &n datorn. Men varken mediet
eller den lagrade informationen i sig har ndgon egentlig betydelse, nar det géller
effektivitet. Det enda som réknas &r informationens struktur, dvs hur information
lagras. Strukturen avgdr hur man hittar information man &r ute efter. Strukturen av-
gor hur lagringen av information ar organiserad fran borjan. Man pratar om data-
basens modell. Avgorande &r den modell man tilldmpat nér man skapade databa-
sen. Det finns olika databasmodeller, se nésta sida. Bland dem har relationsdata-
basmodellen visat sig vara bade mest effektiv och enklast att underhalla.

Sjalva begreppet databas anvands i manga olika sammanhang. | minst tva av dem
kan man precisera betydelsen av databas sa har:

1. ensamling av information i form av tabeller, relationer, nycklar och andra da-
tabasobjekt (vyer, sekvenser, index, ...), t.ex. HR-databasen (sid 218).

2. en programvara som hanterar databaser, en s.k. databashanterare (sid 168),
t.ex.: SQL Server, Access, MySQL, Oracle, DB2,

158

Olika databasmodeller

Design

Hierarkisk databas
Relationsdatabas

Hierarkisk databas: Samling av filer och mappar i tradstruktur.
Natverksdatabas: Samling av filer och mappar i ndgon annan topologi.

Dessa tre databasmodeller har bl.a. anvénts sedan datoriseringen av databaser. Det
ar inte ens idag ovanligt att folk samlar information i filer och lagrar filerna i map-
par. S& lange mangden av data héller sig inom en viss grans &r det inte heller nagot
fel med det, sa lange man hittar den information man sedan letar efter.

Under aren har de hierarkiska databaserna véxt fram, helt oplanerat och spontant.
Hierarkiska heter de eftersom filerna laggs i mappar organiserade i en tradhierarki
liknande mappsystemet i de flesta operativsystemen (Windows, Linux, Unix, ...).

Nétverksdatabasmodellen liknar de olika topologier som forr i tiden fanns i de da-
tornatverk som byggdes med kablar (Buss, ring, stjdrna, ...). Bade den hierarkiska
och nétverksdatabasmodellen anvénds inte langre for lagring av stora dataméngder.
Anledningen ér att relationsdatabasmodellen i praktiken har visat sin dverlédgsen-
het. Vi kommer snart att inse detta. | fortsattningen kommer vi att endast ha att
g6ra med denna databasmodell vars principer vi borjar att lara oss i detta kapitel.

Relationsdatabasmodellen

1970 introducerade Codd, forskare inom datavetenskap pa 1BM, denna modell i sin
doktorsavhandling ”A Relational Model of Data for Large Shared Data Banks”.
Han kallade sin modell for en relationsmodell, for den bygger pa begreppet rela-
tion som vi kommer att behandla pa sid 163. Relationsdatabasmodellens fordelar ar
sa stora att de flesta databaser i varlden idag &r relationsdatabaser. De overtraffar
alla andra modeller med avseende pa:

o Effektivitet
o Tillforlitlighet
e Stabilitet

Det ar anmarkningsvart att databasspraket SQL (sid 171) utvecklades samtidigt av en
annan forskargrupp pa samma foretag IBM och &r logiskt uppbyggt pd samma prin-
ciper som relationsdatabaser och fungerar bast med dem.

159

5.2 Relationsdatabaser

Relationsdatabaser

Dr. EF.Codd: "A Relational Model of Data for
Large Shared Data Banks.”

En modell fér organisation av stora mangder av data som
ar relaterade till varandra.

Modellens byggsten (modul): Tabell

.

angder av data (kolumner).

. Information om en sak ska lagras endast
i en tabell.

Leder till pimar- och frammande nycklar samt relationer.

samling av relationer.

Relationsdatabasmodellens minsta byggsten (modul) &r tabellen. Intuitivt har man
en nagorlunda klar uppfattning om en tabell som en samling av rader och kolum-
ner. Lite svarare ar det att inse att en tabell kan definieras som en relation mellan
mangder, dar relation sjalv ocksa ar en mangd (sid 163). Kopplingen mellan tabell
och relation ar inte intuitiv. For att forstd den maste vi reda ut andra begrepp.

Modularisering

Ett av dessa begrepp &r modularisering — ett koncept som anvénds i all problemlds-
ning, bl.a. i programmering. Modularisering anvands for att bryta ned stora pro-
gram i mindre och enklare hanterbara moduler for att dstadkomma battre strukture-
ring samt effektivitet, t.ex. genom ateranvandning av kod. | databassammanhang
inneb&r modularisering att man samlar information om ett nyckelbegrepp (en kate-
gori av saker och ting, en s.k. entitet) endast i en tabell och inte blandar data av oli-
ka typer i en och samma tabell. Har man t.ex. i ett foretag data om anstéllda och
avdelningar ska man inte samla dem allihopa i en tabell, utan skapa en tabell for
anstéllda och en annan for foretagets avdelningar. Vilka fordelar denna princip av
relationsdatabasmodellen har kommer att visas l&ngre fram (sid 165, 166).

Modularisering — att separera databasens tabeller i fristdende moduler — har vissa
konsekvenser. En av dem ér att en viss information i, sag tabell A, inte langre ar di-
rekt tillgangling i samma tabell utan har lagrats i en annan tabell B. T.ex. finns i ta-
bellen dver anstillda (A) inte namnet pa den avdelning de jobbar, for tabellen Gver
avdelningar (B) har separerats fran A. For att anda kunna komma &t anstalldas av-
delningar maste en relation etableras mellan A och B. Detta leder till att man maste
infora nycklar, ndrmare bestdmt Primér- och frammande nycklar (sid 167). Nyck-
larna beskriver relationen mellan tabellerna. Pa sa satt blir databasen en samling av
relationer och darmed en relationsdatabas.

160

Tabell: rader & kolumner

Rad (post)
» Innehaller all data till ett exemplar-ay tabelltyp, t.ex.
all information om en anstalld i tabellenrAnstéllda.

Kan identifieras med ett unikt varde resp.‘en ik
vardekombination (priméarnyckeln, se 4 sid vidare).

* Ordningen i tabellen &r inte definierad, obestamd.

Kolumn (falt)

« Innehaller en typ av information om varje rad i tabellen.
» Maste ha ett namn = kolumnhuvudet = kolumnrubriken
» Maste ha en datatyp. Kan ha NULL i vissa poster.

» Har en position i tabellen: Ordningen ar definierad.

Att relationsdatabasmodellens minsta modul &r tabell féranleder oss att ndrmare
titta pa dess bestandsdelar: rader och kolumner. lbland kallar man raderna dven for
poster, och kolumnerna for falt. Vi kommer dock att hélla oss till rader och kolum-
ner. De har fétt vissa roller som aterspeglar deras funktionaliteter. Vi ska precisera:

En rad i en tabell t.ex. om ett foretags avdelningar (tabelltypen) far endast inne-
hélla information om en speciell avdelning: Avdelningens namn, ort, postnr, gatu-
adress, etableringsdatum osv. Raden utgdr ett exemplar (objekt) av typen (katego-
rin, klassen) Avdelningar.

En kolumn daremot far endast innehélla information till en kolumnrubrik. T.ex.
rubriken postnr kan ha talet 18047 som varde, rubriken avdelningsnamn kan ha tex-
ten IT eller etableringsdatum datumet 02-JAN-08. Alla vérden i en kolumn maste
vara samma typ av data, antingen tal, text, datum eller ndgon annan typ av data.
Darfor maste en kolumn ha en datatyp. Pa vissa rader kan information saknas. D&
blir det en tom cell i kolumnen, och man séger att denna cell innehaller NULL — ett
ofta forekommande nyckelord i databassammanhang som betyder ingen informa-
tion och som inte borde forvéxlas med talet 0 som &r information.

Medan en kolumn alltid maste ha ett namn (rubriken) som den entydigt kan identi-
fieras med, behdéver en rad inte a priori ha ett sddant. Man kan dock ge den en iden-
tifieringsnyckel i form av ett nummer i en extra kolumn eller en nummerkombina-
tion i flera kolumner for att kunna hitta den i tabellen, vilket ar rekommenderat att
gora. Denna nyckel kallas tabellens primarnyckel och far inte innehalla varken
dubbletter eller NULL (sid 167).

Ytterligare en skillnad mellan rader och kolumner ar deras ordning. Medan kolum-
nerna har en fast ordning i tabellen, &r radernas ordning odefinierad. | vissa samman-
hang kan man t.o.m. referera till en kolumn genom att anvénda dess plats i tabellen,
t.ex. kolumn nr 1 eller 2 osv. istéllet for att ange kolumnrubriken. Raderna daremot
ar oordnade.

161

Liknelse med klass och objekt

e Tabell

+ Entomtabell med fardefinierade kolumnrubriker kan
jamfdras med en kiass dar kolumnema (bortsett fran
priméar- ach f de nycklar) &r dess datamed-
lemmar (egenskaper, attrib

e Rad
+ Varje rad som laggs i tabellen kan jamforas med eft
objelt av denna klass (tabellen). Varje data i en rad
ar ett varde till en objektmedlem.
Finns en primarnyckel anvands den for att identifiera
raden pa entydigt satt (objektets namn).

Lat oss titta pa klassdiagrammet till ho- / \
ger. Om vi bortser fran metoderna (mar- Employee

kerade med +) och koncentrerar oss pa da-

. - firstName
tamedlemmarna (markerade med -) kan vi - lastname
jamfora klassen Employee med en tom - ﬁ%rthDate
tabell vars kolumner ar klassens data- - hireDate

- workingHour

medlemmar, se nedan. Tabellens struktur
ar identisk med klassens struktur nar det + Ssalary()

géller datamedlemmarna, vilket ger oss + Present()
! MorningActivity () /

en ledtrdad om hur vi ska bygga vara ta-
beller. Klassens metoder kommer att bli
funktionaliteter som sedan maste laggas till med kod.

Fornamn Efternamn | Fodelsedatum | Anstalln.datum Arbetstid

Tabellen borde dopas till Employees. Just nu & den tom. Men nér vi lagger in
nagra anstallda i den motsvarar detta att skapa objekt av klassen Employee. Varje
cell i en sddan rad innehaller information om just denna anstélld, vilket kan jamfo-
ras med de varden som man skickar med konstruktorn nar man med new skapar ett
objekt av klassen Employee. Objektet initieras med dessa vérden. Nér tabellen se-
dan véaxer innebdr det att man skapar ytterligare objekt av samma klass, dvs lagger
in flera anstéllda i tabellen. | en relationsdatabas borde man lagga till tabellen ovan
en kolumn bestaende av t.ex. ett Iopande nummer (utan dubbletter) som ska sedan
fungera som tabellen Employees’ primarnyckel (sid 167). Primarnyckeln kan jam-
foras med objketets (radens) namn och ar till for att pa ett entydigt satt kunna iden-
tifiera raden och kunna relatera tabellen till databasens andra tabeller. Sadana rela-
tioner behandlas pa de féljande 4 sidorna.

162

Vad ar en relation ?

| ett hyreshus bor Ola, Eva och Jimmy i lagenhet 1, Tabel
Alexander och Helen i lagenhet 2, "en person tildelas sin Higenhet"
David och Diana i lagenhet 3. Person Lagenhet
Lat Person vara mangden av alla personer som bor i hyreshuset: -d
Person = { Ofa, Eva, Jimmy, Alexander, Helen, David, Diana } e
Lat Lagenhet vara mangden av alla lagenheter i hyreshuset: ”

Lagenhet={1,23}
s

Sambandet | "en person tilldelas sin ldgenhet® | aren relation }

mellan dessa tva mangder och kan beskrivas bla.ien fabelf

Begreppet relation har sitt ursprung i mangdlaran dar man betraktar méangder av
saker och ting (foremal, objekt) — reella eller virtella — och definierar operationer
mellan dem (union, snitt, ...). Varje operation genererar en ny mangd. L&s mer om
operationer mellan mangder i avsnittet 2.5 Mangdlara och logik pa sid 78. | data-
bassammanhang &r méngdbegreppet av intresse dérfor att vi har att géra med
mangder av data och med relationer mellan dem. De saker och ting som ingar i en
mangd kallas element. En kolumn i en tabell kan anses som en méngd av sina cel-
ler. En tabell kan betraktas som en mangd av sina kolumner. Den tomma méngden
ar den som inte har ndgot element alls. En méangd kallas véldefinierad, om man all-
tid kan avgdéra om nagot element tillhor mangden eller ej. Vi utesluter icke-véldefi-
nierade mangder (Fotnot sid 78). | exemplet ovan har vi tva valdefinierade mangder:

Person och Lagenhet. L&s mer om méangder.

En relation &r ett samband som tilldelar ett element ur en méngd ett element ur en
annan mangd. Relationen mellan Person och Lagenhet definieras av den inledande
informationen om vem som bor i vilken lagenhet. Det finns olika satt att beskriva
en relation. Tabellformen ovan &r ett sétt att gora det. Praktiskt relevant blir rela-
tionsbegreppet férst nar man stéller upp relationer mellan tabeller. Dérav har rela-
tionsdatabasmodellen fétt sitt namn. Men en relation mellan tabeller bygger i sin
tur pa relation mellan kolumner, i exemplet ovan mellan kolumnen Person och ko-
lumnen Lagenhet. | en relationsdatabas blir detta en relation mellan kolumnerna
som bildar tabellens primar- och frammande nycklar (sid 167).

163

http://www.taifun.se/images/stories/Mangder.pdf

Relation mer exakt

Ex.. Relationen "en person tilldelas sin lagenhet” - lat oss kalla den R -
ar definierad sa har:

” | ett hyreshus bor Ola, Eva och Jimmy i lagenhet 1, Tabell R:
Alexander och Helen i lagenhet 2, "en person tilldelas sin lagenhet”
David och Diana i légenhet 3"
. . . Person Lagenhet
Denna relation kan beskrivas i en tabell ——M Ola 91
. - - . E 1
Relationen R &r en delméngd av den cartesiska produkten Ji: :
Person x Ldgenhet : my
Alexander 2
R={ (Ola1),(Eva, 1), (Jimmy, 1), Helen 2
(Alexander, 2), (Helen, 2), David 3
(David, 3), (Diana, 3) } Diana 3

Relation = delméngd av den cartesiska produkten.
Tabell = relation mellan tabellens kolumner. Raderna beskriver relationen.

Lés om cartesiska produkten i avsnittet 2.5 Mangdléra och logik pa sid 78.

164

Varfor ar 2 tabeller battre an 1?

Exempel:

Information om personers jobb och avdelningars plats dar de jobbar lagras i 1 tabell:

&8
D Namn Jobb Avdelning Plats
10ia “re T 1&4a -—
2Eva m Kista P T
3| Ammy
Alxancer
Helen [Ma d
6 David Chaufior Logistik
7 Dana Grafker PR Lik
Q
Uppdatering: IT-avdelningen flyttas till Stockholm.
1 tabell: Andringen maste goras pa flera stallen. Ingen Modularisering!
2 tabeller: Andringen maste goras pa ett stalle. Modularisering!

Personerna i mangden Person (pa forra sidan) bor inte bara i lagenheter utan har
dven vissa jobb. LAt oss anta att de arbetar pa ett foretag som har ett antal avdelnin-
gar som &r belagna pa olika platser. Tabellen ovan lagrar denna information. Inget
konstigt med den tabellen, skulle man kunna tycka. Men den gar emot relations-
databasmodellens princip om modularisering (sid 160), enligt vilken information
om ett foretags anstéllda ska lagras i en och information om féretagets avdelningar
i en annan tabell. Har ar bada samlade i en tabell. Varfor dr det inte bra ur effektni-
vitetssynpunkt?

Information i tabellerna ska ju inte bara lagras utan dven underhallas dvs uppdate-
ras sa att den alltid aterger den aktuella situationen korrekt. Lt oss anta att det sker
en andring i foretaget och avdelningen IT flyttas frdn Kista till Stockholm. I
tabellen ovan maste denna dndring registreras pa tva olika rader i tabellen, darfor
att det finns tvéa personer, Ola och Eva, som jobbar pé IT-avdelningen. Men det har
ar ju bara ett exempel. Om det finns hundratals anstallda pa den avdelning som ska
flyttas blir det en massa jobb som bara kostar en massa onddiga pengar. Onddiga,
darfor att man hade kunnat reducera jobbet till en &ndring pa en enda rad i en tabell
om informationen om avdelningar fran bérjan hade funnits i en separat tabell. Dvs
om man hade valt en annan modellering av databasen och modulariserat upplagget
av tabellerna.

Frégan som uppstar i den modulariserade modellen ar nu: Hur far vi fram svaret pa
frdgan “’Var jobbar en anstilld”? nir informationen inte langre finns i en tabell utan
i tva tabeller? Nasta sida ger svar.

165

Modularisering leder till relation

Tabellen Anstallda Tabellen Avdelningar
1] Hamn Job Avdelning M Hamn Plats

110ia T-profs 10 1] T Fista
2Eva Frogrammerare 10 \ 1 .1} Ekonom Shockhokm
3| ey Firasar X = Marknad
& R Sahary H / 40 Lt
5 Heen ND 30 flera a0 PR

David Chautior 40
T Digna ik 5

« Varje anstalld arbetar pa endast en avdelning.

« Varje avdelning ar arbetsplats for en eller flera anstalida.

+ Regeln: Information om EN sak (anstallda) ska lagras i endast EN tabell (modulansering).
+ Information om avdelningar (en annan sak) ska separeras och lagras i en annan tabell,

Har har tabellupplagget modulariserats och vi har tva tabeller. Men tittar man noga
och jamfor antalet kolumner i den gamla (férra sidan) och den nya modellen
(denna sida), kan man konstatera att det finns 5 kolumner i 1-tabellmodellen, me-
dan 7 kolumner sammanlagt i 2-tabellmodellen, tabellerna Anstallda och Avdelnin-
gar. Dvs det har kommit till tva nya kolumner. Modellen har fatt en mer komplex
struktur. P& ytan ser det ut som om vi hade kranglat till det hela. Men i sjalva
verket ar det tvartom! Vi har effektiviserat och forenklat tabellernas underhall. Om
vi tar upp exemplet fran forra sidan, da 1T-avdelningen skulle flyttas fran Kista till
Stockholm, behdver vi nu uppdatera endast ett varde pd en enda rad i tabellen Av-
delningar, namligen texten Kista pa forsta raden i kolumnen Plats och inget mer. |
1-tabellmodellen var vi tvungna att uppdatera tva varden pa tva rader i tabellen.

Frégan ”Var jobbar en anstélld”? besvaras nu i den modulariserade 2-tabellmodel-
len pa foljande satt: Anstillden Alexander t.ex. som &r saljare, jobbar enligt tabel-
len Anstallda p& avdelning nr 30. Med denna information gér vi till tabellen Av-
delningar, soker dar i kolumnen Nr efter vardet 30 och hittar informationen att 30 ar
numret till avdelningen Marknad som ligger i Goteborg. Alltsd jobbar Alexander i
Goteborg. Vi kunde besvara fragan tack vare de kolumner som vi laggt till i den
nya modellen: Kolumnen Avdelning i tabellen Anstéllda och kolumnen Nr i tabellen
Avdelningar. Man kallar den férsta kolumnen for fraimmande och den andra for
primarnyckeln. De definierar en relation mellan de tva tabellerna.

166

Primar- och frammande nycklar

* En eller flera kolumner i en tabell kan definieras till tabellens
priméarnyckel (PK).

En tabell kan ha endast en primarnyckel, ev. av flera kolum-
ner: sammansatt PK.

Varje rad identifieras unikt via primarnyckeln. Darfér far inga
dubletter forekomma.

En annan tabells (eller den egna tabellens) primarnyckel i'en
tabell kallas frdAmmande nyckel (FK): Flera majligt!

Tabellen DEEARTMENTS
Tabellen EMP
DEPARTHMENT_ID DEPARTMENT_NAME [MAMAGER_ID LOCATION_ID
EMPLOYEE_ID [FIRST_MAME [LAST_NAME DEPARTMENT ID 10 Adminiraton 0 1700
174 |Ellen el a0 Markating 01 1E00
142 [Curtis Darvins] Shipping 124 1500
102 |Lex D Haan 0 103 1400
104 ||Bnsce Eim=1 Sales 149 2500
202 |Pat Fay 2 %0 Executive 100 1700
206 [William Gintz 10 Accoustling 5 1700
. o0 Cordracting 1700

Primarnyckeln Frammande nyckel Primarnyckeln

Relationsdatabasmodellens viktigaste praktiska konsekvens ar inférandet av nyck-
lar i databasen. Det finns tva typer nycklar, primary och foreign keys. Primarnyc-
keln behovs for att pa ett entydigt sétt kunna identifiera en rad och ange ett exakt
sokvillkor som hittar just denna rad bland tusen- eller kanske miljontals rader i en
tabell. Dessutom behévs primarnyckeln for att kunna definiera frimmande nycklar,
varfor den heter primar. Frammande nycklar behdvs for att relatera tabeller till
varandra och kunna hitta information som enligt modulariseringsprincipen finns i
olika tabeller, t.ex. ”Vilka anstéllda jobbar pa vilka (namngivna) avdelningar?”.

| praktiken bestar en primarnyckel av en (eller flera) kolumner som inte innehaller
nagon genuin information om sjélva tabelltypen, utan snarare administrativ data for
effektiv hantering av tabellen. T.ex. &r 174 ett nummer som anstéllden Ellen Abel
fatt i tabellen EMPLOYEES ovan. S& har kolumnen EMPLOYEE_ID blivit tabellens
primarnyckel. En tabell far endast ha en primarnyckel, men den kan besta av flera
kolumner, i vilket fall man pratar om en sammansatt priméarnyckel. Kolumnen DE-
PARTMENT _ID déaremot &r en fraimmande nyckel i tabellen EMPLOYEES, darfor att
den innehaller endast data frén en annan tabells — namligen DEPARTMENTS-tabel-
lens — primarnyckel. Vardena i den talar om — via numret — pa vilken avdelning en
anstélld arbetar. Dessa nummer &r primarnyckelvérden i tabellen DEPARTMENTS.
Dar &r de unika. Men som frdmmande nycklar i EMPLOYEES forekommer de flera
ganger, eftersom flera anstallda kan jobba pa samma avdelning (sid 166). En fram-
mande nyckel &r en relations konkreta realisering.

167

5.3 Introduktion till SQL

Databashanterare

Programvara for att

skapa,

utforma (designa),

lagra och

administrera databaser,
Kallas Database management system (DBMS eller RDBMS)
som i regel installeras pa en server.

e Exempel pa databashanterare ar Access, (Excel), SQL-
Server, Oracle 21c, MySQL, DB2, FoxPro, Paradox, ...

e Alla DBMS har stod for SQL, men aven for procedurala ut-
okningar av SQL: Oracle PL/SQL,
Micorsoft Transact SQL, ...

Begreppet databashanterare betecknar en programvara som hanterar databaser
som i sin tur bestér av tabeller, nycklar osv. SQL Server, Access, MySQL, Oracle, DB2,
... ar exempel pé& databashanterare. Facktermen ar Database Management System
(DBMS), ibland med tilldgget R som syftar &t Relational DBMS. Vi anvénder, for att
kora bokens kodexempel och évningar, databashanteraren Microsoft SQL Server.
Aven om programvaran i regel — dvs nar den anvénds i skarp produktionsmiljo —
installeras pa en server (dator med serverversionen av ett operativsystem, t.ex.
Windows Server), ar det fullt mojligt att installera den aven pa en vanlig klient-
dator (t.ex. Windows 10) for test- och utbildningsandamal — vilket vi gjort for att
testa vara koder. D& finns bade databasservern (DBMS) och klienten pa en och
samma dator. Det spelar ingen roll nér det géller att lara sig anvandningen av data-
bashanteraren.

Microsoft SQL Server innehaller bl.a. en SQL-interpretator (tolk), en Transact SQL-
kompilator (Gversittare) — bada forenade i en s.k. parser — ett integrerat verktyg for
generering av maskinkod. Andra tillverkare har motsvarande verktyg i sina data-
bashanterare, som alla stdder SQL.

Transact SQL, &ven kallad T-SQL, &r Microsofts utékning av SQL, ett programme-
ringssprak for databashanteraren Microsoft SQL-Server. FOr att dvervinna SQL-
sprakets begransningar, har man integrerat SQL i T-SQL, ddr man kan utnyttja
programmeringens alla konster. Alla databastillverkare har utvecklat sina egna pro-
cedurala utdkningar av den allménna SQL-standarden. Microsofts uttknings-
produkt &r T- SQL, Oracle:s motsvarighet heter PL/SQL som stér for Procedural Lan-
guage extensions to SQL.

168

Klient — Server-modellen

For att forsta vad som egentligen pagar nar man fran C# ansluter sig till en databas
och vilka program som &r ansvariga for vilken del av denna kommunikation,
speciellt samspelet mellan C# och SQL, ska vi i detta avsnitt titta pa en modell som
ar typisk for arbetet med en databas i en skarp miljé som bést kan beskrivas med
den s.k. klient-server-modellen. Det &r inte bara C# och SQL som ar involverade i
denna process utan ocksa en annan, helt ny programvara vom vi inte anvant hittills,
namligen SQL Server. P& sid 168 hade vi namnt den som ett exempel pa en data-
bashanterare, i princip jamforbar med Access, MysQL, Oracle, DB2 osv. En sadan
programvara maste vara installerad pa en serverdator i en skarp miljé for att vi som
klienter ska kunna kommunicera med en databas. Sa hér t.ex. kan den se ut:

Klient — Server-modellen

SQL staller en fraga, tex:

SELECT department_name
FROM departments;

dvs ber om en tjanst (ki

den vill ha, men inte hur sv

AR TR T MM

Operationens slutresultat ar alltid en tabell: 'Resultaita

SELECT-satsen skrivs pa en (klient)dator och ska ta fram kolumnen depart-
ment_name fran tabellen departments. Men databasen som administrerar denna
tabell finns i regel inte pd samma dator utan pa en annan (server)dator som
databashanteraren SQL Server &r installerad pa. Observera att du inte forvéaxlar SQL
Server som ar ett program dvs mjukvara med servern som ar en dator dvs hardvara.

Vi som sitter vid klientdatorn skickar SQL-fragan till servern som sedan svarar med
en resultattabell, i det har fallet kolumnen department_name:s innehdll. Serverns
svar dr alltid i tabellform, vare sig den har en, tva eller flera kolumner. Hur servern
utfor sjalva sokoperationen och hur den hittar tabellen departments i databasen
samt kolumnen department_name i den, behdver vi inte bry oss om. Det enda vi
behdver gora &r att exakt beskriva vad operationens slutresultat ska bli. Och det gor
vi i SQL-fragan. Det &r darfor SQL ocksa kallas ett deklarativt sprak: Man beskriver
bara vad man vill ha, inte hur det ska géras — till skillnad fran procedurala sprak
dar man kodar algoritmer dvs i allra hdgsta grad beskriver hur ett problem ska
I6sas. Sprak som beskriver hur ett problem ska l6sas kallas procedurala. C, C++,

169

Java, C#, PL/SQL, Transact SQL ar exempel pa procedurala sprak, aven om nagra
av dem dessutom &r objektorienterade. SQL beskriver bara vad problemets — dvs
sokoperationens — slutresultat ska bli.

Det viktigaste i klient-server-modellen &r kanske forstaelsen for att det endast ar
via databashanteraren — i vart fall SQL Servern — vi kan komma &t databasen och
dess tabeller, Gppna dem och med hjalp av SQL titta pa deras innehall. Inte den fy-
siska distinktionen mellan klient- och serverdatorn ar avgdrande — den kan i vissa
fall t.o.m. slopas — utan den logiska skillnaden mellan programmen pa klient- och
serversidan. P4 serversidan maste en databashanterare vara installerad. Den admi-
nistrerar inte bara databasen och underhaller dess tabeller. Den har aven ett verktyg
som kan exekvera SQL-kod dvs kan tolka SQL-spraket till maskinkod — en s.k.
SQL-interpretator (tolk).

Lyckligtvis ar databashanteraren SQL Server en integrerad del av Visual Studio
som (férhoppningsvis) installerades med nér vi borjade programmera med C#
(Progri, Appendix B). S& den borde vara installerad pa vara datorer, bara att vi inte
har anvant den hittills. Nu ska vi boérja gora det. Till denna databashanterare
kommer vi att skicka vara SQL-satser via C#. Dvs C# kommer att vara den
klientmiljo hos oss som kommunicerar med SQL Servern. | och med detta kdnne-
tecknas var miljo av en annan omstandighet som skiljer sig fran den skarpa miljén
som beskrivs pa forra sidans bild: Klient och server finns i en och samma dator.
Rent tekniskt sett 4r det mjligt. Sé& linge det handlar om en test- och utbildnings-
miljo ar det t.o.m. ganska bekvamt att inte behdva administrera tva olika datorer
samt deras uppkoppling till varandra. Men da blir det &nnu viktigare att vi i denna
miljo som forenar klient och server i en och samma maskin, skiljer klient- och ser-
verfunktionerna, C# och SQL Server, frdn varandra och relaterar dem till ratt pro-
gram, dven om bada ar integrerade i Visual Studio. Vi kommer nu att anvanda
denna miljo i hela databaskapitlet.

ADO.NET-objektmodellen

ADO.NET star for ActiveX Data Objects for .NET och ar ett bibliotek av fordefi-
nierade C#-klasser som ingar i .NET-plattformen och kan anvindas for att komma
at databastjanster pa SQL Server och andra databashanterare. ADO.NET &r en ny
produkt som ersétter Microsofts gamla ActiveX Data Objects. Aven om vi kanske
inte direkt kommer att ha att géra med ADO.NET-objekt i vara enkla databasappli-
kationer, dr det vért att kdnna till den bakomliggande teknologin. De viktigaste
namnutrymmen i ADO.NET-objektmodellen med sina tillhérande klasser dr:

e System.Data
o DataSet
o DataTable
e System.Data.OleDb
e System.Data.SqlClient
o SglConnection
o SqlCommand
o SglDataAdapter

170

SQL — databasers sprak

Structured Query Language
(Strukturerat fragesprak)

Standardsprak for kommunikation med relationsdatabaser.
Oberoende av databashanterare.

Utvecklades pa 70-talet av IBM.
Idag: allman standard, senaste version: SQL-99

Med SQL kan man stélla fragor” till databaser for att

ta fram, uppdatera,

sortera och

strukturera information i databaser,
skapa tabeller, definiera constraints
ge réttigheter till databasobjekt, ...

SQL ar varldens mest anvanda sprak for kommunikation med databaser — den all-
manna standarden i hela varlden som galler i alla databashanterare. Aven om SQL
sjalv kallar sig for ett strukturerat “frage”sprék, ir dess anvindningsomradet Iangt
ifran begrinsad till att "fraga” for att f4 fram en viss information. Med SQL kan
man dven andra innehallet i tabeller, skapa tabeller och andra databasobjekt, defi-
niera primar- och frimmande nycklar (ddrmed relationer) samt andra s.k. con-
straints, skapa anvandarkonton, tilldela dem rattigheter och mycket mer. Con-
straints (restriktioner) &r regler som stalls upp for att uppratthalla och bevaka da-
tabasens konsistens och integritet (helhet), vilket bl.a. innebar att det aldrig fér fin-
nas nagon motsagelsefull information i databasen.

Pga SQL:s stora anvandningsomrade skulle man kunna éverge den historiska be-
teckningen fragesprak och prata om SQL som ett kommunikationssprak istéllet dar
”kommunikation” &ven omfattar uppdatering samt underhéll och administration.

SQL utvecklades i borjan av 70-talet efter Dr. E.F.Codd:s banbrytande arbete om
relationsdatabaser (sid 159) av ett forskarteam pa IBM, kommersialiserades 1979 av
Relational Software (foregangaren till Oracle) och standardiserades 1986 av ANSI,
det amerikanska och 1987 av I1SO, det internationella organet for standardisering.
Sedan dess har 1SO dkat SQL:s funktionaliteter. Den senaste standarden &r SQL-99
som kompletterades 2003/2006 med bl.a. stod for XML (eXtensible Markup Language),
ett sprak med syftet att kunna utbyta data mellan olika informationssystem.

Har du installerat Visual Studio pa din dator sé finns det aven SQL med installerad pa
din dator, ndrmare bestdmt databashanteraren Microsoft SQL Server. Du kan etablera
kontakt med den nar du 6ppnar Visual Studio, vilket vi kommer att ldra oss i 5.4 Var
forsta SQL Server databas med C# (sid 179).

171

SELECT-satsen

Laser fran data n och visar data i kelumner och rader:

I
Selekterar kolumner fran 1 tabell Selekterar rader fran 1 tabell

Tabell 1 : 3 Tabell|2

Tar ut data fran flera tabeller

SELECT-satsen ar SQL-sprakets mest anvanda sats, har manga varianter och kan
kombineras med de flesta andra satser i SQL. Vad den kan géra visas kortfattat pa
bilden ovan: Att selektera (valja ut) data fran databasens tabeller, antingen kolumner
(projektion) eller rader (selektion). Detta kan goras fran en, tva eller flera tabeller. |
praktiken innehdller ju en skarp databas stora méangder av information. Men i det
dagliga arbetet behéver man ofta bara en liten brakdel av denna valdiga information.
SELECT-satsen ger oss mojligheten att selekter och fa ut exakt den information som
vi onskar just da. | sa fall maste vi definiera var denna information &r lagrad i data-
basen, dvs i vilken tabell, i vilken kolumn och pa vilken rad av denna tabell osv. Re-
lationsdatabasens struktur gér det mojligt att hitta den sokta informationen med en
enkel och logisk syntax i SELECT-satsen som visas p& bilden nedan. Denna sats tar
fram alla kolumner —
med symbolen * —
fran tabellon depar- Aft ta ut alla kolumner
tments. Nar_ denna <ELECT

sats skickas till data- FROM departments:

basen svarar servern
med att visa tabellen
departments’ alla
kolumner dvs hela
tabellinnehallet. Bor-

jan av denna utskrift SELECT talar om vilka kolumner som ska tas ut.

ar avbildad under FROM talar om fran vilken tabell kolumnerna ska tas ut.
SELECT-satsen. Ger samma resultat:

Tabellen har fyl’a ko- SELECT deparement id, deparement rame, marager id, location_id
Imner vars rubriker T S

syns i forsta raden.
Listar man upp dessa efter SELECT far man en alternativ syntax for SELECT-satsen
som ger samma resultat.

DUPARTMENT_ID AFTRAMT_SAME LOCATION_ 0

172

Aft ta ut vissa kolumner

SELECT [department_id, location id]
FROM departments;

DEPARTHENT B0 LOCATION_ IR

SELECT och FRoM ir reserverade ord i SQL. Efter SELECT star kolumnernas och
efter FrRoM tabellens namn. Héar selekterar SELECT-satsen endast kolumnerna
department_id 0Ch location_id frdn tabellen departments. Svaret fran
servern ar kolumnerna med rubriker och innehall som visas under SELECT-satsen i
den ordning vi angett dem i satsen, vilket inte har att géra med i vilken ordning de &r
lagrade i tabellen. Att innehallet i dessa kolumner &r tal beror pa att de &r nycklar i
tabellen: department_id &r primérnyckeln och location_id &r en frammande
nyckel i tabellen departments. Frimmande nyckeln hanvisar till en annan tabell,
nérmare bestamt till tabellen 1ocations. Dér hittar man dessa nummer som &r &r
tilldelade vissa orter som ar saten till resp. avdelning vars nummer i sin tur star i ko-
lumnen department_id. P4 sd sétt kan man fa reda pa en eller flera avdelningars
séten. Men detta kréver bl.a. att man selekterar inte bara kolumner (projektion) utan
aven rader (selektion:
Tabellen EMPLOYEES Hittills har vi endast-anvant projektion: Att s era kolumner.
lagrar information om]
f@?etagets el Alf selektera rader: selektion
utdrag ur denna tabell pa Tabellen EMPLOYEES

bilden till hdger visar att e

tre anstéllda jobbar pa av-
delningen 90. Hur kan vi
selektera fran denna ta-
bell de rader som i ko-
lumnen department_id
har vardet 90? Vi far lag-
ga till sELECT-satsen en :
ny satsdel som inleds Detta gdrs med den nya satsdelen (eng. clause) WHERE.
med det SQL-reserverade
ordet WHERE.

173

Att lagga till villkor med WHERE

SELECT employee id, last name, job id, department id
FROM employees
WHERE department id = B0 ;

EHPLOYEE_ID JO8 i DEPASTMENT_ID
PRES

Enkelt villkorpa likhet mellan tal.
= &r hér en jamforelseoperator.

OBS! Villkoret kan involvera en kolumn som inte ens forekommer,
i| SELECT-satsen:
SELECT employee id, last name, job id
FROM enployees
WHERE department id = 90 ;

Har utvidgas SELECT-satsen med WHERE: Medan efter SELECT star kolumner och
efter FROM tabellen, skrivs efter wHERE ett villkor som jamfor vérdena i kolumnen
department_id med talet 90. Servern svarar med endast de rader for vilka detta
villkor visar sig vara sant. Dessa visas under sELECT-satsen. Istéllet for detta enkla
villkor kan efter WHERE &ven st ett sammansatt villkor som man kan formulera med
logiska operatorer. Istéllet for en jamforelse mellan kolumnvarden och tal kan dven
jamforelser géras mellan kolumnvérden och tecken, strangar eller delar av strangar.
Ja t.o.m. mdnstermatchning mot delstrangar ar mdjlig. Med det reserverade ordet
LIKE som man skriver istéllet for likhetstecknet i villkoret efter WHERE kan ganska
avancerade sokningar goras i tabellen for att selektera just de rader man behover.
Den enda begransning man har &r att de jamforda objektens datatyper maste dverens-
stamma. Ett tal kan inte jamforas med en striang. | exemplet ovan maste vardena i
kolumnen department_id vara av samma typ som talet 90. | en relationsdatabas
har varje kolumn i en tabell en datatyp. Véarden av en annan typ kan inte lagras i
kolumnen. All data i en kolumn &r av samma datatyp som vi maste kanna till nar vi
anvéander kolumnen i ett villkor i satsdelen wHERE. Det ar villkorets sanningsvérde
som avgor vilka rader som skrivs ut.

Den forsta SELECT-satsen i bilden ovan skriver ut de anstallda som jobbar pa avdel-
ning 90 tillsammans med sina andra uppgifter i kolumnerna employee id, last_-
name, job_id 0Ch department_id. Den sista kolumnen skrivs ut endast i syftet
att kontrollera att de utskrivna anstallda verkligen jobbar p& avdelning 90. | en verk-
lig situation har man inte behov av denna information. Man har ju sjalv angett den i
sokvillkoret. D& skulle man skriva SELECT-satsen utan kolumnen department_id
vilket visas i den undre delen av bilden ovan. Aven den kommer att fungera och skri-
va ut samma information utan avdelningsnumren. Detta visar att WHERE-Villkoret kan
involvera kolumner som inte férekommer i SELECT-satsen. Det racker att de finns i
tabellen.

174

Radsortering med ORDER BY

SELECT last name, job_id, department_id, hire date
FROM employees

ORDER BY hire date |;

DEPARTMENT 10 DATE

Satsdelen oRDER BY komme
Utan oRDER BY ar radord

ORDER BY sorterarby default i stigande ordning dvs ASC (ASCending).
For fallande ordning kan DESC (DE3Cending) anvandas:
SELECT last name, job id, department id, hire date
FROM employees
ORDER BY hire date DESC:

Nar man med SELECT-satsen tar ut ett antal kolumner frdn en tabell presenteras
kolumnerna i den ordning man angett dem i SELECT-satsen. Men i vilken ordning
visas raderna? Det dr obestamt och kan ej forutségas. Servern skriver ut raderna mer
eller mindre slumpmaéssigt, &ven om man kan férmoda att den tar dem i den ordning
de star i databasens tabell. Men &ven dar finns ingen tillganglig information om
radernas ordning. | princip &r radernas ordning odefinierad.

Men vill man att raderna ska visas i en viss ordning, finns det méjligheten att l1agga
till seLECT-satsen en ny satsdel som inleds med den reserverade ordkombinationen
ORDER BY, foljd av ett (eller flera) kolumnnamn. | exemplet ovan star kolumnen
hire_date efter ORDER BY. D& kommer raderna i utskriften att sorteras efter de an-
stallningsdatum som star i kolumnen hire date, narmare bestamt i stigande ord-
ning. Dvs forst kommer den anstélld som blivit anstélld tidigast av alla. Sedan foljer
anstéllda sorterade efter sina anstallningsdatum. Sjélklart kan man ange en annan ko-
lumn efter ORDER BY, t.ex. lastname, S att sorteringen gors efter efternamnen.
Skriver man inte ndgot explicit (by default) gors sorteringen i stigande ordning. Vill
man ha sorteringen i fallande ordning kan man lagga till det reserverade ordet DESC
(som star for pEscending) efter kolumnnamnet i satsdelen oRDER BY. Har man flera
satsdelar i SELECT-satsen, maste ORDER BY placeras sist i SELECT-satsen, t.ex.:

SELECT last name, salary
FROM employees

WHERE salary > 12000
ORDER BY salary DESC;

Denna SELECT-sats visar efternamn och 16n till de anstéllda vars 16n &r 6ver 12 000,
sorterade efter I6nerna i fallande ordning. Dvs vi kommer att se anstéllden med
maximal 16n forst, foljd av alla andra vars l6ner successivt faller, men ligger dver
12 000.

175

Jamférelseoperatorn LIKE

SELECT last name

FROM enployees
WHERE first name LIKE 'S%n'[:

Alla efternamn vars férnamn
borjar pa S och slutar pa n.
% &r ett mdnstermatchningstecken som betyder:
0, 1 ellerflera tecken — vilka somhelst.

Anstalldas efternamn och anst.datum som bérjade jobba 1995:
SELECT last name, hire date

FROM employees -

WHERE hire date LIEE '%95%':

Sokning i en tabell &r en av de mest forekommande anvéndningarna for databaser.
Dérfor finns det i SQL en uppsjo av mojligheter att jamfora data med varandra. Bero-
ende pa vilken typ av data vi har att géra med — tal, tecken, text, datum osv. — har vi
s.k. jAmforelseoperatorer av olika slag. Det vanliga likhetstecknet = &r en av dem.
Men ofta har man inte méjligheten att testa pa exakt likhet. Man kanske inte kommer
ihdg det exakta namnet pa en person man soker. Av en anstilld i foretaget kommer
vi bara ihdg att hans eller hennes fornamn borjar pa S och slutar pd n. D& kan vi
skicka SELECT-satsen pa bilden ovan till databasen genom att i WHERE-villkoret
skriva LIKE 's%n'. Tecknet % ar i SQL ett monstermatchningstecken som star for
vilket och hur manga tecken som helst. Ett annat monstermatchningstecken &r _ och
star ocksa for vilket tecken som helst, men endats ett. En kombination av bada ger
véldigt effektiva sokningar, se féljande exempel:

Mobnstermatchning med LIKE

SELECT last name
FROM enployees
last name LIKE '_o%'| g

LAST_MAME

Anstéllningsnr. vars andra siffra ar 5 och sista siffra 8:
SELECT last name, employee_id

FROM enployees

WHERE employee id LIEE '_5%8'

LAST_NAME EMPLOYEE _ID
WCEWen

176

EATE TARLE-satsen

CREATE TABLE EKurser

(
KursID INT IDENTITY (1,1) NOT HNULL,
Hamn VARCHAR (50) NOT HNULL,
Langd INT NULL,
InstID INT HOT HULL

e lMaste specificeras:
— Tabellnamn: Kurser
— Kolumnnamn: KursID, Namn, Langd, InstID
— Kolumndatatyper: INT, VARCHAR (50)
(OBS! Inte optional)

Alla véra satser i SQL var hittills SELECT-satser. Det gemensamma hos dem ar att de
ar read-only dvs de kan inte dndra databasen. Alla SELECT-satser, oavsett i vilken
variant de férekommer, gor utdrag ur databasen och visar oss delar av den i form av
en utskrift. Efter dessa utdrag ar databasen i sitt gamla skick. N&r man daremot vill
skapa tabeller &r detta en ingrep i databasen som gor &ndringar. Darfér har man i
SQL en helt annan grupp av satser med befogenheten att inte bara kunna lasa fran
(read-only) utan &ven kunna skriva i databasen. En av dem &r CREATE TABLE-Satsen.

CREATE TABLE-satsen tillhor gruppen Data Definition Language (DDL) i SQL. Ett
exempel pa hur man skriver den ser man pa bilden ovan. Denna sats skapar en tabell
som heter Kurser med kolumnerna KursID, Namn, Lingd OCh InstID. Varje
kolumn méste fa en datatyp tilldelad nar man definierar tabellen. | exemplet ovan har
kolumnerna KursID, Liangd och InstID datatypen INT och kolumnen Namn
datatypen VARCHAR (50) vilket betyder text av langden max 50 tecken. NULL bety-
der ingen information dvs tom cell i tabellen. Vissa kolumner tillats att ha tomma
celler, andra ine (NOT NULL).

Identity

Dessutom ska kolumnen KursID vara Identity. | Microsoft SQL Server kallas den
kolumn som ska automatiskt fa en sekvens av lopande nummer som vérden for
Identity. Det &r inte samma sak som primarnyckel, utan endast en automatisk
numrering av raderna med ett startvdrde (Identity Seed) och ett steg (ldentity
Increment). Identity (1,1) betyder att startvardet och steget ska ha vérdena 1. En
konsekvens av detta &r att du numera inte far ge denna kolumn nagra varden sjalv,
nar du lagger in rader i tabellen, eftersom den far sina varden automatiskt pga Iden-
tity-egenskapen. | andra databassystem, t.ex. i Oracle, heter denna egenskap se-
kvens (Sequence) och &r ett eget databasobjekt.

177

Regler-& konventioner

Nagra regler for SQl -satser:
SQL-satser ar inte nsitive.

Det ar inte obligatoris avsiuta SQL-satsenmed
semikolon.

SQL-satser kan skrivas pa en eller flera rader.

Reserverade ord kan ej forkortas.

+ Skriv reserverade ord med versaler.
= Borja resel ord pa
= Avsluta SQ

Nar vi skrev vara exempel pa SQL-satser forklarade vi inte varfor vi skrev dem just i
den form vi gjorde. Har kommer négra regler och konventioner om SQL-satsernas
form (layout). Observera skillnaden mellan regler och konventioner. Regler maste
foljas, annars kan man inte exekvera koden. Konventioner & rekommendationer som
ar till for att strukturera koden pé bast méjliga satt, s att den blir optimal ur lashar-
hets- och forstaelighetssynpunkt. Konventioner tillhér god programmeringsstil. Ko-
den kan exekveras &ven utan att man foljer dem.

Till skillnad fran de flesta programmeringsspraken dr SQL inte case sensitive, dvs det
spelar ingen roll om man skriver de reserverade orden med stora eller sma bokstaver:
select fungerar lika bra som seLECT. Anda ges rekommendationen att skriva
SELECT av den enkla anledningen att battre kunna skilja mellan SQL-reserverade ord
4 ena och databasens objekt som tabell-, kolumn- och andra namn & andra sidan.

Till skillnad fran de flesta programmeringsspraken behéver man inte avsluta en SQL-
sats med semikolon. Anda ges rekommendationen att géra det. Den har rekommen-
dationen har kanske inte lika stark sk&l som forra. Ett skél kan vara att skilja mellan
satsdelar och satser. Ett annat skal &r att skilja mellan olika satser, vilket inte fore-
kommer bland véara exempel, men blir patagligt nar man skriver ett s.k. script be-
stdende av flera SQL-satser. | enlighet med andra programmeringssprak finns det in-
gen regel for radbrytning varken mitt i en sats eller mellan olika satser. Koden i alla
vara exempel skulle kunna exekveras om vi skrev den pa en enda rad. Men for att
strukturera koden och optimera lasligheten samt forstaeligheten rekommenderas att
paborja en ny satsdel med en ny rad.

Det finns mycket mer att sdga om SQL i allménhet och om SELECT-satsen i synner-
het, men vi satter punkt har for att atervanda till C# och borja anvanda SQL med C#.

178

5.4 Var forsta SQL Server databas

Efter de inledande avsnitten om databaser och SQL &r det dags att bygga vart forsta
C#-projekt som ansluter sig till en databas och utfor enkla operationer: att ansluta
sig till SQL Server som féljde med vid installationen av Visual Studio, att 6ppna
databasen och att visa tabellerna osv. Allt detta ska dessutom gdras via ett grafiskt
granssnitt i Visual Studio. Dvs vart forsta databasprojekt blir en Windows Forms
Application. | det har avsnittet kommer vi att lara oss att:

e ladda en databas till en C# Windows Forms Application, etablera kontakt
med den och anvanda den som en datakalla,

e visa databasens tabeller i en DataGridView-kontroll,

e kunna med SQL lagga till och ta bort rader fran tabellerna samt spara ta-
bellernas nya tillstnd via det grafiska granssnittet.

Som datakélla kommer vi att anvénda oss av en exempeldatabas som &r lagrad i
filen Books.mdf. Filandelsen mdf star for Microsoft SQL Server database file, ett
filformat som Microsoft anvander for fysiska databasfiler. Andelsen visar att filen
ar genererad i SQL Server och kan darfér endast 6ppnas och lasas i SQL Server. Vi
kommer att anvanda den fran C# genom att ansluta oss till SQL Server. Du kan
ladda ner filen fran webbsidan www.taifun.se. Klicka dar pad bokomslaget Pro-
grammering 2 med C#, skrolla ned och leta efter lanken Books.mdf, klicka pa den
for att ladda ned den. Extrahera sedan zip-filen. Gor sa har:

Steg 1: Att skapa ett projekt av typ Windows Forms Application

Oppna Visual Studio och vilj Create a new project. Bland de ménga typer av pro-
jekt (templates) som visas, vélj féljande variant av en Windows Forms Application:

ﬂ Windows Forms App ((NET Framework)

A project for creating an application with a Windows Forms (WinForms) user
interface

C# Windows Desktop

Markera denna ruta och klicka pa Next-knappen. Dialogrutan Configure your new
project dyker upp. DOp projektet till FirstDatabase. Ange Location, bocka for rutan
Place solution ... och klicka pa Create-knappen. Ett grafiskt granssnitt dyker upp
med ett s.k. formfonster i mitten som har rubriken Form1. Formfénstret har ett an-
tal egenskaper som ar samlade i fonstret Properties i det nedre hdgra hdrnet. Om
du inte ser Properties-fonstret kan du fa fram det genom att fran menyraden vilja
View > Properties Window. For att enklare hitta egenskaperna, ordna dem i
alfabetisk ordning med ikonen Alphabetical till hdger: 2

Markera formfonstret och leta i Properties-fonstrets vanstra kolumn efter egenska-
pen Text. Dess defaultvarde kan avldsas i den hégra kolumnen, just nu: Form1.
Markera det och andra det till FirstDatabase. S& snart du gjort detta syns den nya

179

texten pa formfonstrets rubrik. Ga vidare till egenskapen Size i Properties-fonstret
och satt storleken till 850; 400, sa har:

Form1:
Egenskap Varde
Text FirstDatabase
Size 850; 400

Steg 2: Att koppla upp sig till SQL Servern

Har vill vi infoga exempeldatabasen Books.mdf i vart projekt FirstDatabase. FOr
att gora det behdver vi ett nytt fonster som heter Data Sources. Ga i menyraden till
ett textfalt langst till hoger som det star Search i och skriv Data Sources i det.
Klicka pé den lilla triangeln ovan pa rubrikraden och valj Dock for att fasta det i
Visual Studio. Vid det har laget borde ditt fonster i Visual Studio se ut sa har:

o Fle Edt View Gt Piojst Buld Debug Format Test Anolze Took Etensions Window Help © P odmsbee @ 0 - O %
- M2 | Debug - AwcPu - W Start - <@, . & lve Shore

o orcs [Design] & X =
——————————————— DA GdE| o

tabiase’ (1 of 1 project)

StartPosition WindowsDefaultlocation

Tent FirstDatabase
TopMost False.
Tansparencykey |
UsetaitCursor False
Windowstate Hormal

Text

The text associsted with the control

Ga till det nya fonstret Data Sources och klicka pa ldnken Add New Data Source....
Du far foljande dialogruta som fragar efter typen av datakalla som du vill anvéinda i

projektet:

Data Source Confguration Wizard 2

e Markera Database under fragan Whe- W crooesomn s ne
re will the application get data from? | e

Klicka pa Next. 5= 8 8

e Nasta dialogruta fragar efter typen av
databasmodell (visas inte har). Marke-
ra Dataset och klicka pa Next.

e Nasta dialogruta fragar efter databasen
som ditt projekt ska kopplas till. Klic- (emcncies)
ka pa knappen New Connection... :

180

Data Source Configuration Wizard

ii) Choose Your Data Connection

Which data connection should your application use to connect to the database?

- [New Connection.

< Previous

() Connection string that you will save in the application (expand to see details)

Cancel

Du far ytterligare en dialogruta som
heter Choose Data Source (visas
inte har). Vélj som Data source: Mic-
rosoft SQL Server Database File.
Klicka pad knappen Continue. Har
kan det vara att du maste installera
packages for SQL Server Support.
Om det ar sd, gor det. Dialogrutan
Add Connection dyker upp. Klicka i
den pé Browse-knappen och navige-
ra genom filsystemet pa din dator for
att ladda databasfilen Books.mdf till
projektet. Klicka pd OK. Det kan va-
ra att Visual Studio vill uppgradera
databasfilen sa att den blir kompa-
tibel med din aktuelle version av Vi-
sual Studio. | s& fall svara bara ja.

Du atervander till dialogrutan Choo-

||

Enter information to connect to the selected data source or click
"Change" to choose a different data source and/or provider,

Add Connection

Data source:

Microsoft SQL Server Database File (SqlClient) Change...

Database file name (new or existing):

CAC#\FirstDatabase\Backer.mdf Browse...
Log on to the server
@ Use Windows Authentication
Use SQL Server Authentication
Save my password
Advanced...
| Test Connection | | OK | | Cancel |

se Your Data Connection, bara att det nu har tillfogats namnet pé& databasfilen.
Klicka pa Next. Svara Ja pa fragan om du vill kopiera filen till projektet.

| nasta dialogruta som heter Save the Connection String to the Application
Configuration File & namnet BooksConnectionString redan forvalt for den
forbindelse du skapade ovan. Bocka for lilla rutan Yes, save the connection
as: (om den inte redan &r forbockad) och klicka pa Next.

I nasta och sista dialogruta som du ser pa nasta sida ska du vélja de delar av
databasen, s.k. databasobjekt som du vill anvanda i ditt projekt. Var databas i
filen Books.mdf har bara tabeller. Sa bocka den lilla rutan vanster om Tables
och expandera Tables med den lilla pilen till vanster Du far en forsta inblick i

databasens innehall.

181

Data Source Configuration Wizard [

i? Choose Your Database Objects
N

Which database objects do you want in your dataset?
4 [V]=i Tables

> [V ER AuthorlSBN
> [V B8 Authors
> (V] B Titles

CIE views

[C]E Stored Procedures

[C]fx Functions

DataSet name:
BéckerDataSet

Som man ser har databasen tre tabeller: AuthorlISBN, Authors och Tiltles. Klic-
ka pa Finish.

Du atervander till projektets ursprungliga miljo. Men nu ser man databasens
struktur i fonstret Data Sources till vanster och det har kommit till i Solution
Explorer databasfilen Books.mdf som en del av projektet. Dessutom har Visual
Studio skapat bl.a. ett s.k. XML Schema document med namnet BooksData-
Set.xsd. Markera det, hogerklicka och valj View Designer for att se databasens
struktur i ett diagram som kallas for DataSet Designer:

B¢ FirstDataBase - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+) L = O x
FILE EDIT VIEEW PROJECT BULD DEBUG TEAM SQL TOOLS TEST ARCHITECTURE AMNALYZE WINDOW HELP
N - B~ p Stat - Debug - A m
BockerDataSetxsd + X Rl T v Solution Explorer sossmmammsmminnnnmm: v 10
@ e-2nda o &H
AuthorISBN Search Solution Explorer (Ctrl+") o-
? AuthorD ? AuthorD] Solution FirstDataBase' (1 project]
% 15BN Firsthlame 4 FirstDataBase
[AuthorISBNTableAdapter LastName b S Properties
P =W References
4L Fill GetData £ AuthorsTableAdapter o)
r pp.config
L FillGetData () b @ Backenmdf

4 g¥ BockerDataSet.xsd
b %) BockerDataSet.Designer.cs
) BockerDataSet.xsc
%) BockerDataSet xss
a Forml.cs

® 15BN » %) Forml.Designer.cs
BookTitle 1 Formlresx
EditionNumber b #3 Forml
Copyright b c* Program.cs
Properties s w X
BéckerDataSet DataSet .

E[m] #

182

Diagrammet DataSet Designer (pa forra sidan) visar 3 tabeller: Varje ruta repre-
senterar en tabell. Overst star tabellernas namn, under dem kolumnerna. De kolum-
ner som &r markerade med en nyckel &r tabellens nycklar. | tabellen Authors &r ko-
lumnen AuthorlD primérnyckeln. | tabellen Titles & kolumnen ISBN priméarnyc-
keln. Tabellen AuthorISBN:s bada kolumner &r daremot frammande nycklar. Des-
sutom visar diagrammet &ven relationerna mellan databasens tabeller. De &r ritade
med linjer forsedda med pilar. L& om relationer och primér- och frimmande
nycklar pa sid 163-166 / 167.

Steg 3: Att visa databasens innehall

Diagrammet ovan och fonstret Data Sources visar databasens innehall: Vi ser t.ex.
att det finns en tabell som heter Authors. Vi vill titta i den. For att 6ppna tabellen
Authors och visa dess rader och kolumner gor sé har:

e Atervdnd till din form Form1 via fliken eller genom att i Solution Explorer
markera Form1.cs, hogerklicka pa den och valja View Designer.

e Gatill det nya fonstret Data Sources pa vanstersidan, markera tabellen Authors
och dra den med musen (genom att halla ned den véanstra musknappen) till formen.
Darmed har du skapat tva nya s.k. kontroller i formen: Den ena heter authorsBin-
dingNavigator och &r en rad med ett antal navigeringsmenyer som lagger sig direkt
under formens rubrik. Den andra heter authorsDataGridView och &r en plats dér ta-
bellen Authors’ innehéll kommer att visas. Klicka p& authorsDataGridView:s Smart
Tag (lilla pilen till hoger ovan) och klicka pd Dock in parent container, sa att au-
thorsDataGridView fyller hela formen. Sa har borde resultatet bli:

-

0 FirstDatabase - Microsoft Visual Studic (Administrator] = | B i)
Eile Edit Wiew Project Build Debug Team SQL Data Format Tools Unit Test Architecture Apalyze Quick Launch (Ctrl+ Q) ye
Window Help

R R I Debug - [M| 32 \ | =
w @ DATASOURCES + I X BockerDataSetusd® Forml.cs [Design]* # X - i SOLUTION EXPLORER ¥ R X
s - e N
Z wsw0 ®a 2@ |
) &N BockerDataSet ol FirstDatabase =N | Search Solution Explorer (Ctr O~
5 i AuthorlSBN 4 40 of 0} b bl X MW [Solution ‘FirstDatabase' (L *
= AuthorlD Nk 4 [FirstDatabase

= 15BN AuthorlD FirstName LastName

_ . b S Properties A
3 & Authors [+ * b B References :
2 AuthorlD {® App.config

=} T b @ Bocker.mdf

LastMame

4 ¥ BockerDataSetxsd
AuthorlSBM

b 3 BockerDataSet.D

W Ties T BockerDataSetax .
15BN . : ;
BookTitle
EditionNumber SOLUTL.. | TEAME.. CLASSV...
Copyright PROPERTIES - ax

Wt AuthorlSBN authorsDataGridView System. -
o
= (Application o
> (DataBindin:
(Name) authorsDataG
AccessibleD
AccessibleN

Al

thorsTableAdapter 8 tableAdapterManager e authersBindingNavigator AccessibleR Default -
(ApplicationSettings)
“ .] m T Maps property settings to an ap...
Ready 0,28 300 x 220

183

Som man ser har den nya kontrollen authorsDataGridView samma kolumner som
tabellen Authors, namligen AuthorlD, FirstName och LastName. Observera ocksa
att authorsDataGridView inte an visar tabellens innehall utan forbereder denna vis-
ning genom att skapa en plats som ar anpassad till tabellens struktur.

Allt vi gjort hittills skedde i designlage. Vi har inte anvant en enda rad kod. Anda
ar programmet nu redo att visa tabellens innehall nér vi nu gar 6ver fran design- till
korlage. Kompilera fran menyraden med = Build - Build Solution och exekvera
med > Debug - Start Without Debugging. Tabellen Authors har fyra rader och tre
kolumner och ser ut sa har:

o FirstDatabase l = | =) lﬂhjw
1 ofd | b M 9 X H
AuthorlD FirstName LastName
3 _ Harvey Deitel
2 Paul Deitel
3 Greg Ayer
4 Dan Quirk
*

Nu kan vi i korlage anvanda menyerna under formens rubrik for att hantera tabel-
len. | sjalva verket ar det kontrollen authorsBindingNavigator:s menyer vi anvéan-
der. Med hjélp av dessa sjalvinstruerande knappar kan vi:

- navigera genom tabellens rader
- andra radernas innehall

- lagga till nya rader (med +)

- tabort rader (med x)

- spara dina andrigar

I borjan sa vi att detta projekt genomférs med Visual Studios visuella verktyg utan
att vi sjalva behover skriva nagon kod. Sa har vi ocksa gjort. Men det betyder inte
att programmet fungerar helt utan kod. Det har skapats automatiskt genererad kod
som ligger i filen Form1.cs: Tva handelsemetoder har lagts till klassen Form1. Den
ena heter Forml_Load () och ser till att, ndr formen laddas, dvs nar programmet
exekveras, data kopieras fran databasfilen till projektets DataSet, sé att vi ser tabel-
lens innehdll i DataGridView-kontrollen. Den andra handelsemetoden heter au-
thorsBindingNavigatorSaveltem_Click() och ser till att data sparas i DataSet nar
man klickar pad Save-menyn i nya kontrollen authorsBindingNavigator. Allt detta
hande nér vi skapade de tva nya kontrollerna authorsDataGridView och authors-
BindingNavigator i vart projekt genom att med musen dra tabellen Authors fran fon-
stret Data Sources till formen.

184

5.5 En SQL klient i C#

I det har avsnittet kommer vi att lara oss att:

Steg 1:

skicka SQL-fragor fran en ComboBox-kontroll till databasen Books,

visa fragornas resultattabell i en DataGridView-kontroll.

Att skapa projektet och forse det med databasen Books

Detta steg liknar Steg 2 i projektet FirstDatabase. Oppna Visual Studio,

skapa en Windows Forms Application och dép projektet till SQLclient. An-
dra formfonstrets rubrik och storlek enligt féljande:

Form1:
Egenskap Varde
Text En SQL klient
Size 1200; 600

Genomfor de steg fran projektet FirstDatabase som var nodvandiga for att
ladda databasen Books.mdf till projektet (sid 180-183), dvs forkortat:

I huvudmenyraden: Search - Data Sources - Dock.

Klicka i det nya fonstret Data Sources pé ikonen Add New Data Source.
Choose a Data Source Tye: Database = Next.

Choose a Database Model: Dataset = Next.

Choose Your Data Connection: New Connection...

Add Connection: Browse = Books.mdf =... OK - Next.

Choose Your Data Connection = Next = Ja.

Save the Connection String to the Application Configuration File - Yes,
save the connection as: > Next.

Choose Your Database Objects - Expand Tables = Finish.

Du atervander till projektets ursprungliga miljo med formfénstret osv. Databa-
sen Books har infogats i projektet. Ga till Data Sources och expandera Books-
DataSet for att se databasens innehall: tre tabeller med sina resp. kolumner.

Markera tabellen Titles i fonstret Data Sources och dra den med musen
till formen. S skapar du kontrollerna titlesBindingNavigator och titlesDa-
taGridView som placeras i formen. Klicka pa titlesDataGridView:s Smart
Tag och klicka p& Dock in parent container. Sa har borde din miljé nu se
ut.

185

0 sQLclient - Microsoft Visual Studio (Administrator)

= o

©- o |- & » -

KRN)

File Edit View Project Build Debug Tesm SQL Dats Tools

DATASOURCES » & X Forml.cs [Design]* & X

Debug

Unit Test Architecture Analyze Window Help
A

4 g BockeDataSet
4 i AuthorlSBN
[AuthorlD

o5 sQLelient
40

of [0}

[R

[15BN 15BN
4 @ Authors *
AuthorlD
] FirstName
] LestName
» g AuthorlSBN

XO8100L ¥3407TdX3 MIANIS

5] BaokTile
] EditionNumber
Copyright

» g AuthorISBN

BookTite

EdtionNumber

Copyight

Quick Launch (Ctrl+Q) o

-~ SOLUTION EXPLORER =wwiwiezees v [X
ee@ sl ael "
Search Solution Explorer (Ctrl+") P
[#] Solution 'SQLlient' (L project)
4 [SQlclient
b & Properties
b *m References
¥® App.config
@ Bockermdf
¥ BockerDataSetsd
FormL.cs
c Program.cs

3
3
3
»

SOLUTIONE... |TEAM EXPL:
PROPERTIES

CLASS VIEW
b %

iew System.Windows.Fon

> (ApplicationSetti

> (DataBindings)
(Name)
AccessibleDeseriy

titlesDataGridView

- &9 bockerDataSet

Ready

] titlesBindingSource

&8 titlecTableAdapter

AccessibleRole Default
Allowbrop False
AllowUserToAdd True o

Markera i Solution Explorer BooksDataSet.xsd, hdgerklicka pa det och
vélj View Designer. Du ser databasen Books:s struktur i ett diagram med
alla tabeller, relationer, primér- och fraimmande nycklar osv. Den har vi-
suella representationen av databasen, DataSet Designer, kanner vi till fran

tidigare projekt.

DataSet Designer:

0 SQLelient - Microsoft Visual Studio (Administrator) = | B i
Fie Edit View Project Build Debug Team SOL Dsts Tools UnitTest Architecture Analyze Window Help Quick Launch (Ctrl+Q))
L@ | B postat - Debug - e
@ v DATASOURCES * v & X BockerDataSetxsd® # X Forml.cs [Design] = SOLUTION EXPLORER = v L X
3 .
ERRCE-RCN = = aaeE & ae

) G d
2 ¥ BockerDataSet : z Search Solution Bxplorer (Ctrl+) P
AuthorlD AuthordD

H BB AuthorlsEN uther uthor Solution 'SQLelient’ (L project)
= 3 AutherlD ? 15BN FirstName 5
& 4 [E SQLclient]

ISEN T LastName PR — E

2 BB Authors . FilGeets 0 = b\ XN References
8] AuthorlD . i App.con
= 5 Firsthlame 4L Fill GetData () ¥ App.config
] b i Bockermdf

LastName 4 g9 BockerDataSet xsd -
2| GRS SOLUTION... | TEAMEXPL.. CLASS VIEW
B Titles
BN PROPERTIES -x
] BookTitle - & TitlesTableAdapter TableAdapter =
73 EditionNumber ? 15BN = ‘
Copyright BookTitle :
= AuthorlsBN > InsertCommand (InsertCommand)
EditionNumber
P, Modifier Public
opyright Name TitlesTableAdapte
&= » SelectCommand (SelectCommand) =
s Fill GetData () » UpdateComman (UpdateCommand _
Ready

Diagrammet visar i slutet av varje tabellruta en s.k. TableAdapter. Det &r
en klass som automatiskt genereras av Visual Studio till varje tabell. Klas-
sen TableAdapter har bl.a. en metod Fill() som anropas i handelsemetoden
Forml_Load () som i sin tur anropas nér formen laddas. Och detta sker
nér vi exekverar programmet. Koden finns i filen Form1.cs.

Kompilera och kor projektet nu for att se hela tabellen Titles’ innehall.

186

Steg 2: Att skriva och exekvera egna SQL satser

Om vi nu vill med SQL-fragor selektera och visa endast vissa delar av tabellen
Titles maste vi lagga till egna metoder till klassen TableAdapter och formulera vara
SQL-fragor i dem. Det &r tekniken att skicka SQL satser till servern. Gor sa har:

e Markera i diagrammet DataSet Designer pa forra sidan, i rutan som repre-
senterar tabellen Titles, klassenTitles’ TableAdapter, hdgerklicka och vélj
Add Query... . Dialogrutan Choose a Command Type 6ppnas:

[TableAdapter Query Configuration Wizard % [|

=
=
= P=

Choose a Command Type

TableAdapter query uses SQL statements or 3 stored procedure,

How should the TableAdapter query access the database?
@ Use SQL statements
Specify a SELECT statement to load data.
") Create new stored procedure
Specify a SELECT statement, and the wizard will generate a new stored procedure to select records.
") Use existing stored procedure

Choose an existing stored procedure.

Mext > Cancel

L

Valj alternativet Use SQL Statement och klicka pa Next.

e Nasta dialogruta: Choose a Query Type.
Vélj SELECT which returns rows och klicka pa Next.

TableAdapter Query Configuration Wizard @léj
Choose a Query Type 9___

Choose the type of query to be generated -

What type of SQL query would you like to use?

@ SELECT which returns rows

Returns one or many rows or columns.,

") SELECT which returns a single value

Returns a single value (for example, Sum, Count, or any other aggregate function).
") UPDATE

Changes existing data in a table.

) DELETE

Removes rows from a table.

) INSERT

Adds a new row to a table.

< Previous Next > Cancel

187

Nésta dialogruta heter Specify a SQL SELECT statement. Skriv in foljan-
de SQL-fraga i textfaltet med rubriken What data should the table load?
och klicka pa Next (OBS! inte pa finish!):

SELECT *
FROM Titles
WHERE Copyright = '2007';

TableAdapter Query Configuration Wizard |2 [tz
Specify a SQL SELECT statement 9___
The SELECT statemnent will ke used by the query. ==

Type your SQL statement or use the Query Builder to construct it. What data should be loaded into the table?
What data should the table load?
SELECT *

FROM Titles
WHERE Copyright = ‘2007

Query Builder...

[<previous || Mea> || mnsh || Conca |

Dialogrutan Choose Methods to Generate dyker upp:

TableAdapter Query Configuration Wizard T)
Choose Methods to Generate 9___
The TableAdapter methods load and save dats between your application and the database. ==

Which methods do you want to add to the TableAdapter?
Fill a DataTable

Creates a method that takes a DataTable or DataSet as a parameter and executes the SQL statement or SELECT stored
procedure entered on the previous page.

Method name: Fil Copyright2007
Return a DataTable

Creates a method that returns a new DataTable filled with the results of the SQL statement or SELECT stored
procedure entered on the previous page.

Method name: GetDataCopyright2007]

[<predous][met> |[Amsh | [conca |

Har maste vi specificera de metoder som ska exekvera var SQL-fraga. Vi
vill anvénda vara egna metoder. Darfor andrar vi de forvalda namnen
FillBy till FillCopyright2007 och och GetDataBy till GeDataCopyright2007.

188

Klicka nu pa finish for att atervanda till diagrammet DataSet Designer. De
tva nydefinierade metoderna har nu kommit till rutan som visar tabellen
Titles, 1&ngst ned under TitlesTableAdapter. Kompilera och kor: Fortfaran-
de ser man hela tabellen Titles.

Nu ska vi exekvera den nya SQL satsen. Markera Form1l.cs i Solution Ex-
plorer, hogerklicka och vélj View Code for att se formens kod. Sist bland
klassens Form1:s metoder finns hdndelsemetoden Forml_Load (). Ersatt
anropet av metoden Fill() i den med anropet av den nya metoden FillCopy-
right2007(). S& hér blir dd Forml_Load () :s fullstandiga kod:

private void Forml_Load(object sender, EventArgs e)

this.titlesTableAdapter.FillCopyright2007
(this.booksDataSet.Titles) ;

}
Kompilera och kor. Har &r resultatet av den nya SQL satsen:
(a2 sqidiient SEIC)
1 of2| b M |4 XK W
ISBM Book Title EditionMumber ~ Copyright
4 Java How to Program 7 2007
0132404168 C How to Program 5 2007
*

h

Som man ser visas endast tva bocker med vardet 2007 i Copyright-kolum-
nen pga att vi i formens kod hade ersatt metoden Fill () med metoden

FillCopyright2007().

Testa dven anropet av metoden Fill () istéllet for metoden FillCopy-
right2007():

private void Forml_Load(object sender, EventArgs e)

this.titlesTableAdapter.Fill (this.booksDataSet.Titles)

}

Resultatet blir att man far tabellen Titles’ fulla innehall dvs alla rader.

Hur vet man att metoden Fill () exekverar den SELECT-sats som visar alla rader,
och metoden FillCopyright2007 () exekverar den SELECT-sats som endast vi-
sar de rader med vérdet 2007 i Copyright-kolumnen? Vi kan fa reda pé det om vi
gor sa har:

189

Markera i Solution Explorer BooksDataSet.xsd, hdgerklicka, vélj View Designer:

20 5QLclient - Microsoft Visual Studio (Administrator) = | B)
File Edit View Project Build Debug Team SQL Data Tools UnitTest Architecture Analyze Window Help Quick Launch (Ctrl+Q) »
F@ o | iE | p St~ Debug - -

@ DATA.. ~ B X BockerDataSetxsd + X Forml.cs m s SOLUTION EXPLORER - I x
4 ———

5 WeER T eaeEslaga|d
D EEmEEE g Search Solution Explorer (Ctrl+") P-

AuthorlD

5 oo AT F_“ ;r [¥] Solution 'SQLclient’ (1 project) -

ﬁ 23] A.uthurs = irstName 4 [SQLclient E
FR Titles LastName b K Properties

é‘ &2 b ®E References
= S Fill GetData () ¥® App.config
=] 4 g Bocker.mdf

% Récker lon.ldf -
SOLUTION EXPLORER | TEAMEXPLORER | CLASS VIEW
= PROPERTIES v ax
& Fill Query -
? BN =[]
BookTitle CommandText SELECT ISBN, BaokTitle, EditionNumber, Copyright FROM dbo.Titles +
EditionNumber CommandType |Text N
Copyright ExecuteMode Reader |
&2 FillMethodModifier Public i
e |
SQL FillCopyright2007, GetDataCopyright200... GenerateMethods Both
GetMethodModifier Public
< m rf i r —_
Ready

Markera i rutan som visar tabellen Titles, langst ned under TitlesTableAdabter, ra-
den Fill,GetData() sa far du i Properties-fonstret metoden Fill():s egenskaper] | egen-
skapen CommandText kan du l&sa den SELECT-sats som &r kopplad till Fill().

Om du i samma ruta markerar raden FillCopyright2007,GetDataCopyright2007()
kan du i Properties-fonstret lasa SELECT-satsen i metoden FillCopyright2007():

20 SQLclient - Microsoft Visual Studio (Administrator) = | B |t
File Edit View Project Build Debug Team SQL Data Tools UnitTest Architecture Analyze Window Help Quick LauncH (Ctri<Q) »p
P@- OB » st~ Debug - M|
w ¢ DATA.. ~ 1 X BockeDataSetxsd® = X < SOLUTION EXPLORER > x
g -
F WewE = GaFeR s e @
z ¥ BockerDataSet 2 Search Solution Bxplorer (Ctrl+*) re
AuthorlD
é H AuthorlsEN F.u tI\Tr [# Solution 'SQLclient’ (1 project) -
E ER Authors irsthlame 4 [& SQLdient =
R Titles LastName > S Properties
é CF b =W References
= s FillGetData ¥® App.config
= 4 g Bockermdf
N Récker lan,Idf M
SOLUTION EXPLORER | TEAM EXPLORER (CLASS VIEW
: PROPERTIES X
o i@f FillCopyright2007 Query -
2 1ssn By v
BookTitle CommandText SELECT * FROM TitlesWHERE Copyright = "2007° +
EditionNumber CommandType Text
Copyright ExecuteMode Reader L
52 FillMethodModifier Public 3
. Fill GetData [FillMethodName FillCopyright2007
F FillCopyright?007, GetDataCopyright2007) Generatelethads Both
GetMethodModifier Public
q m b < m » FoJoY W PR SpRgt \ PP o WP R L, T,V 3 -
Ready

Eftersom vi i det har databasprojektet for forsta gangen har tillfogat lite kod till de
visuella verktyg som byggde projektet vill vi har sammanfattningsvis visa den vik-
tigaste delen av kod som vid sidan av den stora mangden automatiskt genererad

190

kod, styr exekveringen av projektet och som vi har modifierat lite grann. Denna
kod finns i filen Form1.cs. Du far fram den genom att markera Form1.cs i Solution
Explorer, hdgerklicka och vélja View Code. For enkelhetens skull har vi tagit bort
all onddig automatiskt genererad kod och behallit det som behdvs for detta projekt:

// Forml.cs 1 projektet SQLclient, ver 1. Visar data fran

// en databastabell i en DataGridView-kontroll.

// Klassen Forml drver klassen Form frdan System.Windows.Forms
// Deklarerar tre metoder: en konstruktor & 2 hdndelsemetoder
using System;

using System.Windows.Forms;

namespace SQLclient

{

public partial class Forml : Form // Forml &drver Form

{

public Forml () // Klassens konstruktor

{
}

private void titlesBindingNavigatorSaveItem Click(
object sender, EventArgs e)

InitializeComponent () ;

{
this.Validate () ;

this.titlesBindingSource.EndEdit () ;
this.tableAdapterManager.UpdatelAll (this.booksDataSet) ;

}

private void Forml Load(object sender, EventArgs e)

{
this.titlesTableAdapter.FillCopyright2007

(this.booksDataSet.Titles) ;

}

Klassen Form1 definierar tre metoder: Den forsta metoden Formil () ar klassens
konstruktor som initierar formens grafik. Den andra metoden titlesBindingNa-
vigatorSaveItem Click () &r en hdndelsemetod som definieras héar och anro-
pas nir Save-knappen i kontrollen titlesBindingNavigator klickas. Da& sparas alla
gjorda andringar i projkektets DataSet. Den tredje metoden Forml_ Load() é&r
ocksa en handelsemetod som definieras har, men anropas nar formen laddas. Och
formen laddas nér vi exekverar projektet. | metoden Forml_Load () anropas i sin
tur metoden FillCopyright2007 () som vi lagt in déar. Den exekverar SELECT-
satsen som vi skrev in i dialogrutan Specify a SQL SELECT statement, hamligen:

SELECT *
FROM Titles
WHERE Copyright = '2007';

191

Steg 3: Att lagga till ett grafiskt gréanssnitt till SQL klienten

Hittills &r detta projekt inte sarskilt intressant ur praktisk synpunkt. Det var mer
lampat for att lara kdnna de mest grundlaggande rutinerna i hanteringen av en data-
bas. Man forvéntar sig lite mer av en ”SQL klient”, framfor allt en smidigare kom-
munikation mellan klienten C# och SQL Servern. For att dstadkomma detta ska vi
nu vidareutveckla projektet och forse det med tva nya grafiska komponenter. En av
dem &r en kontroll som heter ComboBox som kommer att tjana som en plats dar vi
fran en dropplista kan sé att saga online vélja vara SQL-fragor och skicka dem till
SQL Servern. Den andra &r en kontroll som heter Label som instruerar anvéndaren.
Svaret fran servern ska precis som hittills visas i den DataGridView-kontroll som vi
skapat och redan anvant i den forsta delen av projektet.

Den nya kontrollen ComboBox &r en dropplista dar anvandaren kan vélja mellan
olika alternativ. Den kréver lite mer kod som ska avgora vilket alternativ anvén-
daren valt just vid den aktuella kdrningen for att kunna exekvera rétt SQL-sats. Vi
kommer att realisera detta genom att skriva en switch-sats “bakom” den grafiska
komponenten ComboBox.

GOr sa har:

e Atervand till formfénstret Form1 genom att i Solution Explorer héger-
klicka pa Form1.cs och vélja View Designer.

e Ga till huvudmenyraden, klicka pa View och vilj Toolbox. Fonstret Data
Sources till vénster ersatts med Toolbox-fonstret. Expandera Toolboxens
Common Controls. Markera kontrollen ComboBox, dra den med musen
(genom att halla ned den vénstra musknappen) till formen och lagg den
langst ned i formen. Genomfor i Properties-fonstret foljande andringar i
den nya ComboBox-kontrollens egenskaper:

comboBox1:
Egenskap Vérde
Location 0; 515
Size 1180; 28

e Markera formen, himta frdn Toolbox en Label-kontroll till formen och gor
i Properties-fonstret foljande &ndringar i den Labelns egenskaper:

labell:
Egenskap Varde
Location 400; 485
Text Valj en SQL-fraga fran dropplistan:
Font Arial; 12pt; style=Bold

192

e Markera kontrollen comboBox1 och klicka pa dess Smart Tag (den lilla
pilen till hoger). Valj Edit Items, skriv in féljande texter i dialogrutan
String Collection Editor och klicka pa OK:

SELECT FROM Titles;

*
SELECT * FROM Titles WHERE Copyright 2007’ ;
SELECT * FROM Titles WHERE Copyright 72009’ ;
*
*

SELECT FROM Titles WHERE EditionNumber > 4;
SELECT FROM Titles ORDER BY BookTitle;

e Dubbelklicka pd ComboBox-kontrollen nér den ar markerad i formen. Fi-
len Form1l.cs visas dar huvudet till en hdndelsemetod automatiskt skapats
som heter comboBoxl_ SelectedIndexChanged (). Den kommer att
anropas sa snart man véljer resp. byter till ett alternativ i ComboBoxens
dropplista. Légg in foljande switch-sats i metoden comboBox1l_Selec-
tedIndexChanged () Vvars kod & markerad med vit bakgrund:

// Forml.cs 1 projektet SQLclient

// Skickar SQL-frdagor till en databas fran en ComboBox
// Visar serverns svar 1 en DataGridView-kontroll
using System;

using System.Windows.Forms;

namespace SQLclient

public partial class Forml : Form

{

public Forml ()

InitializeComponent () ;

}

private void titlesBindingNavigatorSaveItem Click(
object sender, EventArgs e)

this.Validate() ;
this.titlesBindingSource.EndEdit() ;
this.tableAdapterManager.UpdateAll (this.booksDataSet) ;

}

private void Forml_ Load(object sender, EventArgs e)

{
}

private void comboBoxl SelectedIndexChanged
(object sender, EventArgs e)

{

switch (comboBoxl.SelectedIndex)

{

case O:
titlesTableAdapter.Fill (this.booksDataSet.Titles) ;
break;

193

}
}
}
}

case 1: titlesTableAdapter.FillCopyright2007
(this.booksDataSet.Titles) ;
break;
case 2: titlesTableAdapter.FillCopy2009
(this.booksDataSet.Titles) ;
break;
case 3: titlesTableAdapter.FillEdNo4
(this.booksDataSet.Titles) ;
break;
case 4: titlesTableAdapter.FillOrderBy
(this.booksDataSet.Titles) ;
break;

Samtidig

t ta bort kroppen till formens héndelsemetod Forml Load(), inte hela

metoden. Detta darfor att anropen av metoderna Fill () och FillCopyright-

2007 ()

ar flyttade till ComboBoxens handelsemetod comboBox1_SelectedIn-

dexChanged (), ndrmare bestdmt till case 0 och 1 av switch-satsen. Ingen SQL-

sats ska

exekveras ndr formen laddas, utan forst ndr man véljer ett alternativ i

ComboBoxens dropplista. 1 och med detta val tilldelas ComboBoxens variabel
comboBox1.SelectedIndex ett av vardena 0-4. D& kommer den metod att an-
ropas i switch-satsen som svarar mot detta varde.

For att koden ovan ska fungera maste vi komplettera TitlesTableAdapter-klassens

metoder

med de metoder vi anropar i switch-satsen ovan. Darfor gor sa har:

Atervand till DataSet Designer. Markera i rutan som visar tabellen Titles,
klassen TitlesTableAdapter, hogerklicka och valj Add = Query... .

G4 igenom de dialogrutor fran projektets forsta del, forkortat:

Choose a Command Type = Use SQL statements = Next.
Choose a Query Type = SELECT which returns rows = Next.

Skriv i dialogrutan Specify a SELECTstatement foljande SQL-fraga i text-
faltet:

SELECT *

FROM Titles

WHERE Copyright = 2009;

Klicka pa Next (OBS! inte pa finish!). Dialogrutan Choose Methods to
Generate dyker upp. Andra de férvalda namnen FillBy till FillCopy2009
och GetDataBy till GetDataCopy2009. Klicka nu pa finish for att &tervan-
da till DataSet Designer.

194

Upprepa forfarandet: Markera TitlesTableAdapter i rutan som visar tabel-
len Titles, hogerklicka och vélj Add Query... . Ga vidare i de tva foljande
dialogrutorna genom att klicka pa Next.

Skriv i dialogrutan Specify a SELECTstatement foljande SQL-fraga i text-
faltet:

SELECT *

FROM Titles

WHERE EditionNumber > 4;

Klicka pd Next (OBS! inte pa finish!). Dialogrutan Choose Methods to
Generate dyker upp. Andra de férvalda namnen FillBy till FilEdNo4 och
GetDataBy till GetDataEdNo4. Klicka nu pa finish for att atervanda till
DataSet Designer.

Upprepa forfarandet: Markera TitlesTableAdapter i rutan som visar tabel-
len Titles, hogerklicka och vélj Add Query... . Ga vidare i de tva foljande
dialogrutorna genom att klicka pa Next.

Skriv i dialogrutan Specify a SELECTstatement foljande SQL-fraga i text-
faltet:

SELECT *

FROM Titles

ORDER BY BookTitle;

Klicka pad Next (OBS! inte pa finish!). Dialogrutan Choose Methods to
Generate dyker upp. Andra de forvalda namnen FillBy till FillOrderBy och
GetDataBy till GetDataOrderBy. Klicka nu pa finish for att atervanda till
DataSet Designer.

Kompilera och kor. Testa dina SQL-fragor frdn ComboBoxen. S& har kom-
mer korresultaten med den 1:a, 2:a och 5:e SQL-satsen i i ComboBoxens
dropplista att se ut:

a2l SQLelient = [B S|
1 of8 [b bl [dh X MW
1SBN Book Title EdtionNumber Copyright
v EEEZEIIN riemet & Word Wide Web How ... 4 2008
0132222205 Java How to Program 7 2007
0132404168 C How to Program 5 2007
0136053033 Simply Visual Basic 2008 3 2009
012605305X Visual Basic 2008 How to Program | 4 2009
013605322X Visual C# 2008 How to Program 3 2009
0136151574 Visual C++ 2008 How to Program |2 2008
0136152503 C++ How to Program 6 2008
*
Vilj en $QL-fraga fran dropplistan:
SELECT * FROM Tiles; -

195

P41 ofz [b bl [k X MW
ISEN BookTitle

Java How to Program
0132404168 C How to Program

Vilj en SQL-fraga fran dropplistan:

! SELECT * FROM Titles WHERE Copyright = "2007:

P41 ofg | b M 4 K W
ISBN Book Title EditionNumber Copyright
w: Howto Program 5 2007
0136152503 C++ How to Program [2008
0131752421 Intemet & World Wide Web How .. |4
0132222205 Java How to Program 7
0136053033 Simply Visual Basic 2008 E)
013605305% Visual Basic 2008 How to Program | 4
013605322 Visual C# 2008 How to Program E)
0136151574 Visual C++ 2008 How to Progam |2

Vilj en SQL-fraga fran dropplistan:

l SELECT = FROM Titles ORDER BY BookTtle:

Ytterligare tva korresultat som inte visas har, kan fas med den 3:e och 4:e
SQL-satsen i ComboBoxens dropplista.

196

5.6 Att skapaoch designa en databas i C#

Hittills har vi arbetat med den redan befintliga databasen Books.mdf. Men hur
kommer en sadan databas till? En sak ar ju att 6ppna och visa innehallet av en
befintlig databas och skicka nagra SQL-satser till den och fa svar. En annan sak &r
det att skapa en ny databas, att kanske t.0.m. designa den dvs ge den en struktur
genom att stélla upp tabeller, bestdmma tabellernas relationer, ange primér- och
frimmande nycklar bland tabellernas kolumner osv. Detta kréver kunskap om
design och modellering av databaser. Databasmodellering och -design &r ett &mne
som har beréringspunkter med programmering — ganska liknande problemlésning
med algoritmer, deras beskrivning med flédesschema och UML modellering. Mo-
delleringsproblematiken finns alltid med och maste I6sas innan vi fysiskt skapar
databasen. Modellen av en databas maste finnas innan vi implementerar den ge-
nom att skapa tabeller, relationer, nycklar och andra databasobjekt.

| detta avsnitt ska vi designa en databas och implementera modellen genom att:
e skapa en tom databas i en C# Windows Forms Application, etablera kon-
takt med den och fylla den med tabeller,
e specificera tabellernas kolumner samt deras datatyper,
o definiera tabellernas primér- och fraimmande nycklar,
o bestdmma relationer mellan databasens tabeller,
o fylla tabellerna med data.

For att uppna dessa mal behover vi en konkret fallstudie: Lat oss anta att vi har en
kund som bedriver en kursverksamhet och vill datorisera sin verksamhet i form av
en effektiv och stabil databas med vissa funktionaliteter. Vi gar till ett forsta samtal
och lyssnar pa kundens behov. Sa har lyder kundens kravspecifikation:

Projekt Kursverksamhet

Kunden beréattar:

“Vi anordnar kurser ledda av instruktérerinom data och
management. Varje kurs har en kod, ett namn och en
langd. Tva av vara mest populara kurser heter “Iniedning
till UNIX” och “Programmering med C++”. Kursernas langd
varierar mellan tva och fem dagar. Tva av vara basta in-
struktorer heter Paul Rogers och Maria Gonzales. ['vara
underlag behdver vi namn och telefonnr till varje instruktor.
Till varje kursdeltagare antecknar vi namn, telefonnr och
e-mailadress.”

Vilka tabeller, vilka kolumner, vilka relationer?

197

Databasmodellering

Tillbaka fran kundsamtalet ar vi helt stallda mot vaggen: Hur ska vi skapa en data-
bas som svarar mot kundens kravspecifikation? Men som tur & kommer vi ihag
var kompis Kalle som har last en kurs i databasmodellering. Vi mailar Kalle kun-
dens beskrivning och far tillbaka féljande diagram (Kalles modell):

Tabell- och-relationsmodell for

"Kursverksamhet”

| KURSER | | KUURBDELT AGARE |

* KurslD PK) | * EmviD{PR)
Mamn = Hamn
Langd Emall

InstiD [FK) K 51D [FK)

INSTRUKTO RER

= InstiD P}
Hamn
Talnr

Kalle skriver att detta ar ett s.k. ER-diagram dar ER star for Entity-Relationship.
ER-modellering &r en standard inom databasmodellering som lagrar all information
i s.k. entiteter. En entitet ar ett nyckelbegrepp, ndgot viktigt for verksamheten —
reellt eller virtuellt — som man behéver lagra information om — jamférbart med
klasser i objektorienterad programmering. Kalle har utifran kundens beréttelse
kommit fram till att entiteterna i detta projekt &r KURSER, KURSDELTAGARE 0ch IN-
STRUKTORER. Det ar de som vi maste lagra information om. For varje entitet har
Kalle ritat en ruta i diagrammet ovan. Han l&gger till att vid implementeringen av
modellen alla entiteter i modellen borde goras till tabeller. | varje entitets ruta star
ett antal attribut dvs egenskaper som vid implementeringen ska bli kolumner. Kalle
har &ven avgjort vilka kolumner som ska bli nycklar: PK (Primary Key) star for
primérnyckel och FK (Foreign Key) for fraimmande nyckel. Enligt Kalles modell
ska varje tabell ha en primarnyckel. Relationerna &r ritade mellan tabellerna och de
fraimmande nycklarna. Vi tar Kalles modell som en plan for att bygga en databas i
C# for projektet Kursverksamhet.

Steg 1: Att skapa databasen Kursverksamhet
e Skapa en Windows Forms Application av typ C# Windows Forms App
(.NET Framework) och dop den till Kursverksamhet.

e Ga till Solution Explorer, markera projektnamnet Kursverksamhet och ho-
gerklicka pa det. Vélj Add = New ltem.... Dialogrutan Add New Item dy-
ker upp. Scrolla ner den mellersta kolumnen och vélj Service-based Data-

198

base. Skriv i textfaltet Name: Kursverksamhet.mdf. Klicka pd Add. Du
har skapat en ny, tom databas: | Solution Explorer har kommit till lag-
ringsfilen Kursverksamhet.mdf for den nya databasen. Markera den, ho-
gerklicka och valj Open.

o0 Kursverksamhet - Microsoft Visual Studio (Administrator) o S
File Edit View Project Build Debug Team 5SQL Data Tools Unit Test Architecture Quick Launch (Ctrl+(Q) el
Analyze Window Help
|?ﬁ-“'i|}5tart' Debug |ﬂ||'n'|-;
= SERVER EXPLORER =@ ¥ B X Forml.cs [Design] ® X ~ 0 SOLUTION EXPLORER = + I X
Qx| %t f el s "
= @¥ Data Connections a5 Forml =23 =] Search Solution Explorer (Ctrl+ P~
PR =N Kursverksamhet. mdf 4[] Kursverksamhet
[| T.ah\es P S Properties
Ml Views [=W References
> Ml Stored Procedures 8 App.config =
M Functions 3 Forml.cs r
b M Synonyms b @ Kursverksamhet.mdf
» Ml Types B €* Program.cs -
Ml Assemblies ‘ s
o= ServerS_ SOLUTL.. | TEAME.. CLASSVL.
[[E SharePoint Connections

: PROPERTIES e BX
Kursverksamhet.mdf Connectio ~

= [A
=2

(Name) DACHKURSVER =
SERVER EXPLORER. TOOLBOX al Cace Sensitin_False -
Ready
e Ett nytt fonster dppnas i Visual Studio: | Modify Connection (-2 o]

Steg 2:

Server Explorer. Dock fonstret. Hoger-
klicka pa Kursverksamhet.mdf i det nya
fonstret och valj Modify Connection... .
En ny ruta 6ppnas (till hoger): Klicka
pa Test Connection for att kolla om du
ar ansluten till databasen. Om ja, med-
delas: Test connection succeded. Klic-

ka pa OK i bada rutor.

[

Microsoft Visual Studio

go. Test connection succeeded.

Att skapa tabeller i databasen

Enter information to connect to the selected data source or click
"Change" to choose a different data source and/or provider.

Data source:

Microsoft SQL Server Database File (SqlClient)
Database file name (new or existing):
Browse...

CACHR\Kursverksamhet\Kursverksamhet.mdf
Log on to the server

@ Use Windows Authentication

") Use SQL Server Authentication

Save my password

Test Cannection | [o]

Cancel |

Markera Tables i Server Explorer och hdgerklicka pa det. Valj Add New
Table. En ny flik 6ppnas och fyller hela stora fonstret i mitten. Den heter
dbo.Table[Design] och bestar av tre delfonster: | det undre delfonstret (fli-
ken T-sQL), star SQL-kod som skapar en tabell. Den inleds pa rad 1 med:

199

CREATE TABLE [dbo].[Table]

dbo stdr for database owner och sétts automatiskt framfor tabellnamnet
for att skilja mellan olika anvandares tabeller med ev. samma namn. Ga
dit med musen och ersétt tabellnamnet med Kurser:

CREATE TABLE Kurser
Dérmed har vi enligt Kalles modell (sid 198) dopt tabellen till Kurser.

Fliken dbo.Table[Design] (vanster ovan) har nu dépts om till dbo.Kurser-
[Design]. | den 6vre delen av den finns det en rubrikrad med Name, Data
Type, Allow Nulls, Default och under den textfaltet dar vi kan mata in véra
kolumners uppgifter.

Enligt Kalles modell ska forsta kolumnen vara KursID: Andra i textfaltet
under rubriken Name den redan befintliga texten Id till KursID. Ga vidare
till textféaltet under rubriken Data Type och vilj int som datatyp om det in-
te redan star dar. Tillat i denna kolumn inga Null-varden, dvs inga tomma
celler. Bocka dérfor inte Allow Nulls.

Kolumnen KursID ska bli primérnyckel i tabellen Kurser. Nyckelsymbolen
star redan till vanster om KursID.

Dessutom ska kolumnen KursID vara Identity. | Microsoft SQL Server kal-
las den kolumn som ska automatiskt fa en sekvens av lépande nummer for
Identity. Det &r inte samma sak som primérnyckel, utan en automatisk
numrering av raderna med ett startvarde (Identity Seed) och ett steg (Iden-
tity Increment). Hogerklicka i tabellens rubrikrad, t.ex. héger om rubriken
Name, avbocka Default och bocka for Identity, Identity Seed och Identity
Increment. Default tas bort och dessa tre tillfogas rubrikraden. Bocka for
rutan under Identity. L&t bade Identity Seed och Identity Increment ha
vardet 1. Du far numera inte ge denna kolumn négra vérden sjalv, nar du
lagger in data i tabellen, eftersom den far sina véarden automatiskt.

Skapa ytterligare tre kolumner i tabellen Kurser: Namn, Langd och InstiD,
enligt Kalles databasmodell. Ge till Namn datatypen nvarchar(50), bocka
annars for ingenting. Ge till Langd datatypen int, bocka for Allow Nulls.
Ge till InstID datatypen int, bocka annars for ingenting.

Update:

Klicka pa knappen Update (ovanfor rubriken Name) for att spara allt i da-
tabasen. Bekrafta genom att klicka pd Update Database. Om detta mot
férmodan inte skulle fungera, spara allt med File > Save All, stdng Visual
Studio, 6ppna det igen och dppna aven igen projektet Kursverksamhet. En
sddan “omstart” hjélper ibland.

Hogerklicka pa Kursverksamhet.mdf i Server Explorer-fonstret och valj
Refresh. Den nya tabellen Kurser dyker upp under Tables. Expandera den

200

for att se kolumnerna vi just skapade. Till slut borde du ha féljande bild
som design for tabellen Kurser:

o0 Kursverksamhet - Microsaft Visual Studie (Administraten [E=EE—
File Edit View Project Buld Debug Team SQL Tools UnitTest Architecture Analyze Window Help Quick Launch (Ctrl+Q) »
Q- OB - » St Debug - I = | | 5
SERVER EXPLOR... ™ & X dboKurser [Design] # X v SOLUTION EXPLORER szt » X
o e 4 Update | Script File: dbo.Table:sql - aa e Floa
2 Upe pt q
¥ Data Connections Name DataType Allow Nulls Identity Identity Seed Identity Increment Search Solution Explorer (Ctrl+)
4 g Kursverksamhetmdf wa ko R g . [Solution ‘Kursverksamhet' (1 project)
urs int
4 ol [Tables 4 [Kursverksamhet
4 BB Kurser Namn varchar(50) [} o b & Properties
: :ursll] e = & b wB References
lamn B App.config
B Lingd InstiD mit =] =] 3 Forml.cs
B InstiD =] o b @ Kursverksamhet.mdf
b ol Views b c* Program.cs
bl Stored Procedures
b Ml Functions
b Ml Synonyms SOLUTION... |TEAMIEXPL. CLASSVIEW
i :Iwes . QDesign 1 mTsal i = PROPERTIES iv B X
- ssemblies =ICREATE TABLE Kurser i) Karses; Table ”
= servers : -
(8] SharePoint Connections [KursID] INT NOT NULL PRIMARY KEY IDENTITY,
[Namn] VARCHAR(5@) NOT NULL, . (Name) Kurser .
[Langd] INT nuLL, I Data Compressi
[InstID] INT WOT NULL Description :
: Filestream Filegi
Identity Columr KursID
e v Ic Replicated False
—_— 0 5
4 n t ! Lack Escalation Table it
SERVER EXPLO.. TOOLBOX 32 Connection Ready | {LocalDBIW1L0 | STUDENT\talishenas | DAC#\KURSVERKSAMHET\K...
Ready

e Borja om att skapa ytterligare tva tabeller Kursdeltagare och Instruktorer
enligt Steg 2 (sid 199): Server Explorer > Tables > Add New Table. An-
dra koden till de nya tabellnamnen. Skapa i varje tabell kolumner enligt
var modell genom att folja instruktioner for tabellen Kurser. Definiera pri-
marnyckeln till varje tabell. Tilldela Identity-egenskapen till alla tabellers
primarnycklar. Se upp for steget Update pa forra sidan. Efter att ha skapat
t.ex. tabellen Kursdeltagare ser det ut s& har:

50 Kursverksamhet - Microsoft Visual Studio (Administrator) =
File Edit View Project Build Debug Teom SQL Tools UnitTest Architecture Analyze Window Help Quick Launch (Ctrl+Q) P
©- 0| B pstat- Debug - N | | =
SERVER EXPLOR... ~ & X dbo Kursdeltagare [Design] = X + = SOLUTION EXPLOR... = & X
Q x| | " # Update | ScriptFile dbo.Tablesql o @aem| s
@ Ejtic””"i“‘ﬂ";ﬂ - Name Data Type AllowNulls Identity Identity Seed ~Identity Increment | || Search Solution Explorer (C 0 -
4 i@ Kursverksamhetm Solution 'Kursverksamhet' 1 |
o Elevi
4 Ml Tables EleviD iot 3] £ 1 M. B Kursverlsamhet
4 B Kursdeltagare Namn nvarchar(30) = (] b & Properties
'l" o Email nvarchar(20)]] b L REEmEs
amn 8 App.config
B Email KurslD it O 0 b Forml.cs
B KusD 1] 0 b i@ Kursverksamhet.mdf
4 [Kurser b c* Program.cs
-0 KursD
B N ‘ n »
B Longd SOLUTL. |TEAME.. CLASS.
H InstD PROPERTIES =i v I X
b ol Views GDsign "1 - mT.sqL ul=Tc: | e .
b ol Stored Procedures CICREATE TABLE Kursdeltagare + ursdeltagare Table
B | st) [ElevID] INT NOT WU PRIMARY KEY IDENTITY. -
ev (OT NULL PRI A I
B Sy [Namn] NVARCHAR(38) NOT NUL o RSN KursdeMagan
> M Types [Email] NVARCHAR(2@) NOT NULL, i D=tz Comy
b mll Assemblies [KursID] INT NOT NULL Descriptior =
E servers) Filestream
(5] SharePoint Connections Identity Co ElevID
- T Is Replicate False
‘ " ' J ! Lock Escal: Table i
SERVER EXPLO... TOOLBOX 37 Connection Ready (LocalDB)\w110 | STUDENT\talishenas | D\C#\KURSVERKSAMHET\K...
Ready

201

e GoOr samma sak for tabellen Instruktorer med sina resp. kolumner enligt
Kalles databasmodell. Slutligen borde tabellen Instruktorer:s definition se
ut sa har:

0 Kursverksamhet - Microsoft Visual Studio (Administrator] = | B]
File Edit View Project Build Debug Tesm 50L ool UnitTest Architecture Apahze Window Help Quick Launch (Ctrl+Q) »
i@-o| Bl b st Debug - e [[B
SERVEREXPLOR... ~ 1 X dbolnstrukiorer [Design] & X + = SOLUTION EXPLOR.. = 1 X
Q [*¥E6¥| " Updste | scriptfile dboTablesq! - @& e e”
D talonce ol - Name Data Type Allow Nulls Tdentity ~Identity Seed - Identity Increment| || Seerch Selution Explorer (€ £~
4 i@ Kursverksamhet.mc| [# Solution 'Kursverksamhet' (1 |
5 = o InstiD int E 1
4 [Kursverksamhet
4 [Instruktsrer Namn nvarchar(30) b # Properties
=0 =T Telnr nvarchar(20) b *A References
B Nemn e
B Teinr b 8 Formles
4 [Kursdeltagar b i@ Kursverksamhet.mdf
o EleiD b ©* Program.cs
B Nemn |,
B Email : - -
| o SOLUTL.. | TEAME.. CLASS..
4 F Kurser * PROPERTIES v+ ¥ I X
: KurslD srer Table .
Namn
O Design - 1 . o= &
B Lings : SO | R e
SICREATE TABLE Tnstruktérer + _
§ instD {Name) Instruktorer *
b Ml Views [InstID] INT NOT NULL PRIMARY KEY IDENTITY, ~| | > DataComg
» Ml Stored Procedu [Namn] NVARCHAR(3@) NOT HULL, £ Descriptior L
> ol Functions [Telnr] NVARCHAR(28) NOT NULL Filestream
» ol Synonyms Identity Ce InstiD
» ol Types . T Is Replicate False
S ’
« i, v Lock Escal: Table i
SERVEREXPLO... TOOLBOX 3 Connection Ready | (LocalDBJ\W11.0 | STUDENT\talishenas | DA\C#\KURSVERKSAMHET\K...

Ready

Samtidigt ar detta tabellen Instruktorer:s tabelldefinition som man aven far i efter-
hand genom att i Server Explorer hogerklicka pé tabellen Instruktérer och vilja
Open Table Definition. Samma sak kan man géra med de andra tabellerna.

Nu har vi skapat alla tabeller vi behdver i projektet Kursverksamhet och &ven defi-
nierat tabellernas primarnycklar enligt projektets databasmodell. Det som kvarstar
ar att definiera frammande nycklar och att skapa relationer enligt modellen.

Steg 3: Att koppla projektets Dataset till databasen

For att skapa relationer och definiera frammande nycklar — vilket & samma sak —
kommer vi att anvanda oss av ett grafiskt verktyg i Visual Studio som heter XML
Schema, ett diagram som visar strukturen till en databas — den digitala varianten till
Kursverksamhetens databasmodell som Kalle ritade at oss i borjan av detta avsnitt.
Det kallades for ER-diagram (sid 198). XML diagrammet lagras i Visual Studio i en
fil av typen XML Schema document som far andelsen xsd. | vara tidigare projekt
har vi redan visat diagrammet, se DataSet Designer (sid 182). Att det inte dykt upp
i detta projekt beror pa att xsd-filen &r relaterad till ett s.k. Dataset. Och ett sadant
har vi inte definierat &n i projektet. Det ska vi géra nu och — nér vi gjort det — kopp-
la det till projektets databasfil Kursverksamhet.mdf. Gor sé har:

e Gai huvudmenyraden till menyn PROJECT och vilj PROJECT = Add New
Data Source... . Ga till Solution Explorer och klicka pa projektnamnet
Kursverksamhet. G4 till fonstret Data Sources och klicka pa lanken Add
New Data Source... . Du far foljande dialogruta som fragar efter typen av
datakalla som vi har i projektet:

202

Markera Da-

Data Source Configuration Wizard

E

tabase under
fragan Where
will the appli-
cation get da-

ij Choose a Data Source Type
]

Where will the application get data from?

i

Database

ta from? Klic-
ka pa Next.

Service

Object

&n

SharePoint

Nésta dialog-
ruta fragar ef-
ter typen av
databasmo-

dell. Har defi-
nieras det Da-
taset som vi
namnde ovan.
Det kommer

Lets you connect to a database and choose the database objects for your application.

Cancel

att tillfogas

Data Source Configuration Wizard

till projektet i

E

form av en fil.

i:—.l) Choose a Database Model

Markera Da-
taset OCh kIIC_ What type of database model do you want to use?
ka pa Next. IR
..... Dataset Entity Data
Model

Nésta dialog-

ruta som inte
visas héar heter
Choose Your
Data Connec-

be added to your project.

tion. Klicka
pa knappen
New Connec-
tion... .

Du féar ytter-

The database model you choose determines the types of data objects your application code uses. A dataset file will

Pl X

Add Connection

Enter information to connect to the selected data source or click
"Change" to choose a different data source and/or provider,

Drata source:

Microsoft SQL Server Database File (SqlClient)
Database file nare (new or existing):
Browse...

Kursverksamhet.mdﬁ

Log on to the server

ligare en dialogruta som heter
Add Connection (bilden till
héger). Skriv Kursverksam-
het.mdf i textfaltet Database file
name (new or existing). Kilcka
pa OK.

Du atervander till dialogrutan

Choose Your Data Connection,.
Klicka pa Next.

203

@ Use Windows Authentication

() Use SQL Server Authentication

Save my password

|

i Test Connection I [OK Cancel]

e | nasta och sista dialogruta som visas pa féljande bild ska du vélja de
delar av databasen, s.k. databasobjekt (tabeller, vyer, lagrade procedurer,

Data Source Configuration Wizard @léj

i:—.l) Choose Your Database Objects

Which database objects do you want in your dataset?
4 E."‘ Tables -
4 [V] B Instruktarer
B Instid
E MNamn
E Telnr
4 [V]ER Kursdeltagare
B Elevid
E MNamn
B Email
B KursiD
4 [V]EH Kurser
B KurslD
E Mamn
E Lingd
B InstiD
(& views
[T1E2 Stored Procedures i

DataSet name
KursverksamhetData5et

m

[Finish l ’ Cancel]

funktioner osv.) som du vill anvanda i detta projekt. VVar databas har bara
tabeller. S& bocka den lilla rutan vanster om Tables. Samtidigt kan du, om
du expanderar Tables med den lilla pilen till vénster och goér samma sak
med alla tabeller, se hela databasen Kursverksamhet:s struktur. Du far en
inblick i databasens innehall. Det finns dven mojligheten att ge hela Data-
set ett nytt namn i textféaltet

DataSet name. Vi har ingen seltion B(plmfr T o
anledning att andra det for- @ e-endm o sRAR -
Va.lda. namnet Kursverksam- Search Solution Explorer (Ctrl+7) P~
hetDataSet. Sa klicka pé Fi- & Solution 'Kursverksamhet' (1 project)
nish. P Kursverksamhet
b S Properties

Som en for oss viktig konsekvens av b ,:I' i‘*fe'e"‘f"js

proceduren ovan har det nu i Solution =R

Explorer skapats filen Kursverksam- 4 @ Kursverksamhet.mdf

hetDataSet.xsd, vilket gor att vi kan ta 1) Kursverksamhet_log.Idf

fram det diagram som behovs for att 4 g KursverksamhetDataSet xsd

2 = H _ b 3 KursverksamhetDataSet.Designer.cs
pa ett enkelt satt skapa relationer mel 23 KursverksamhetDataSetssc

lan vara tabeller och definiera fram- 33 KursverksamhetDataSet.ss
mande nycklar. Innan vi gor det foljer B c* Program.cs
lite forklaring av dessa begrepp.

204

Steg 4: Att skapa relationer mellan tabeller

Vi avbildar &n en géang
Kalles modell till pro-
jektet Kursverksamhet
for att vi behOver att
hanvisa till den hela ti-
den. Att skapa relatio-
ner mellan tabeller och
att definiera frammande
nycklar, s.k. Foreign
Keys (FK) ar tva olika
uttryckssétt for en och
samma sak. Vilka de
frimmande nycklarna
ska vara, framgar av da-

Tabell- och-relationsmodell for

"Kursverksamhet”

| KURSER | | KURSDELT AGARE |

* KurslD PK) | * EwviD (PR}
Hamn Hamn
L2ngd Emiall

InstiD [FK) Kur sl [FK)

INSTRUKTORER |

* InstiD PK)
Hamin

tabasmodellen till ho- | Telmr
ger. En frammande nyc- A
kel (FK) i en tabell,
t.ex. KursID i tabellen Kursdeltagare, &r en primérnyckel (PK) i en annan tabell,
namligen i tabellen Kurser. FKn KursID i Kursdeltagare lagrar informationen om i
vilken kurs en elev deltar. Linjen i diagrammet mellan tabellerna Kurser och Kurs-
deltagare symboliserar denna relation. Gaffelsymbolen intill tabellen Kursdelta-
gare talar om att det i denna tabell finns en FK som refererar till tabellen Kurser:s
PK, inte tvartom. Dvs en kurs kan ha manga elever, medan en elev deltar endast i
en kurs. Det kan vara annorlunda i vissa skolor, men just i var modell ar det s4,
atminstone enligt den foregivna modellen pa forra sidan. Var kunds berattelse (sid
197) motsdger inte detta. FK-kolumnen KursID i Kursdeltagare kommer att ha sam-
ma varden som PK-kolumnen KursID i Kurser. Efter att vi definierat relationen
(med tillhérande FK) i databasen kommer ingen anvéndare av databasen att kunna
lagga in varden i FK-kolumnen KursID i Kursdeltagare som inte finns i PK-kolum-
nen KursID i Kurser. | praktiken innebar detta att en elev inte kan ga pé en kurs
som inte finns i tabellen Kurser.

Samma sak dr det med den andra relationen mellan tabellerna Instruktérer och
Kurser: FKn InstID i tabellen Kurser lagrar informationen om i vilken kurs en in-
struktdr undervisar. Linjen mellan tabellerna Instruktérer och Kurser med gaffel-
symbolen intill Kurser talar om att det i tabellen Kurser finns en FK, ndmligen
InstID, som refererar till tabellen Instruktorer:s PK, inte tvartom. Dvs en instruktor
kan undervisa i manga kurser, medan en kurs har endast en instruktor. FK-kolum-
nen InstiD i Kurser kommer att ha samma vérden som PK-kolumnen InstiD i In-
struktorer. Efter att vi definierat relationen (med tillhérande FK) i databasen kom-
mer ingen anvéndare av databasen att kunna lagga in vérden i FK-kolumnen InstID
i Kurser som inte finns i PK-kolumnen InstID i Instruktérer. | praktiken innebar det-
ta att en kurs inte kan ha en instruktdr som inte finns i tabellen Instruktorer.

205

Det vi ska gora nu ar att implementera denna modells relationer i Visual Studio,
narmare bestamt i SQL Server som anvands har mer som en databashanterare, vil-
ket & mdjligt pga integrationen av Microsoft SQL Server i Visual Studio.

Vi anvénder oss av de grafiska verktyg i Visual Studio for att rita relationerna mel-
lan databasens tabeller.

Steg 5: Att ta fram databasdiagrammet DataSet Designer

e Markera i Solution Explorer KursverksamhetDataSet.xsd, hogerklicka
och vélj View Designer for att se databasen Kursverksamhet:s struktur i ett
diagram med alla tabeller och kolumner som vi skapat i detta projekt.

e Stall om med musen tabellerna i diagrammet s att de star relativ till va-
randra ungefér s som de &r ritade i var modell pa forra sidan.

o Markera exakt den lilla 1
i ' o
nyckeln i tabellen Kurser:s | " e

kolumn KursID. Hégerklic-

Mame:
Ka och Val] Add > Rela- Kurser_Kursdeltagare
t!on... . DlalOgmtan Rela_ Specify the keys that relate tables in your dataset.
tion kommer upp. Skriv i parent Table: Child Table:
textfaltet Name: Kurser_- (Kurser + | [Kursdeltagare =
Kursdeltagare. Valj som Columns:
Parent Table: Kurser och Key Colurnns Foreign Key Columns B

m

som Child Table: Kursdel- T - | <o

tagare. Valj under Co- 1l
lumns: som Key Columns
KursID och som Foreign
Key Columns ocksd Kurs-
ID. Vélj under Choose

Choose what to create
@ Both Relation and Foreign Key Constraint

| Eoreign Key Constraint Only

what to create radioknap- - Relation Only

pen Both Relation and Fo- Update Rule: | Cascade -
reign Key Constra_int. Ay— Delete Rule: [Cascade -]
sluta med OK. Se bilden till _

hdger. Accept/Reject Rule: ll‘\lone v‘

[7] Mested Relation

[ok || canca |

206

e Gor liknande med den andra rela-
tionen mellan tabellerna Instruk-
torer och Kurser: Fa upp dialog-
rutan Relation med hogerklick pé
den lilla nyckeln i tabellen Instruk-
torers kolumn InstiD. Sedan: Add
- Relation... . Skriv i Name: In-
struktorer_Kurser. V@lj som Parent
Table: Instruktérer och som Child
Table: Kurser, som Key Columns
InstiD och som Foreign Key Co-
lumns ocksa InstiD. Vélj Both Re-
lation and Foreign Key Constraint.
Avsluta med OK.

S& har borde nu databasdiagrammet i Visual
Studio se ut.

DataSet Designer:

o Fie Edt Vew Gt Poject Buld Desbug
- B W2 -] pebg -

Test Amayze Tooks Extensions Window Help

Any CPU < b Start v = @,

PR cursvecksambetDatasetsd® = x [ERAUG

[)
4 @ Dty Connections
4 Kursverksamhet maf
4 Tables
b BB nstruktzrer
b Kursdaltagara

[
b
b
3
b
3

‘

&7 Instrukdarer
% instip
Namn

Steg 6: Att lagga in datai tabellerna

PR X

r
Relaticn

Name:

Instruktarer_Kurser

Specify the keys that relate tables in your
dataset,

Parent Table: Child Table:
lInstruktﬁrer v] ’Kurser -
Columns:

Key Columns Foreign Key i
TELI - | InstD -

Choose what to create
@ Both Relation and Foreign Key
() Foreign Key Constraint Only

%7 KursdeMagareTableAdapter (%

i FlGetnata

() Relation Only
Update Rule:
Delete Rule:
Pl K

e Expandera i Server Explorer Tables och hogerklicka pa tabellen Instruk-
torer. Valj Show Table Data. Mata in de tva instruktérer som namns i kun-
dens beréttelse pé sid 197 osv. Resultatet visas pa nésta sida.

Observera att man inte kan mata in nagra véarden for kolumnen InsID,
darfor att den &r definierad som Identity. Vi har ju sjélva, nér vi designade
tabellen Instruktorer, bestdmt att InstID ska vara Identity. N&r vi designade
tabellen Kurser anmérkte vi att det inte gar att sjalv sétta varden pa ko-
lumner som har Identity-egenskapen (sid 200). Deras vérden bestdms

207

automatiskt. Meningen med att lagga in data i tabellerna ar alltsa — just i
det hér fallet — att 1agga in data i kolumnerna Namn och Telnr.

-
a8 Kursverksamhet - Microsoft Visual Studio (Administrator) o
File Edit View Project Build Debug Teamn SQL Data Tools Unit Test Architecture Quick Launch (Ctrl+Q) P
Analyze Window Help
‘@-O |- » st Debug - A
= SERVER EXPLORER = » I X dbo.nstruktérer [Data] & X ~ = SOLUTION EXPLORER ~ R X
[#] |"'?"'Eli'|1:s fﬂ|*i‘MaxRows: 1000 '|Ufﬂ m@;”"'
= @8 Data Connections Search Selution Explorer (Ctr P~
InstiD Mamn Telnr
4 [Kursverksamhet.mdf [# Solution 'Kursverksamhet' #
4 Ml Tables y Paul Rogers 08-793 65 78 4 [Kursverksamhet
p EH Instruktarer 2 Maria Gonzales 073-76598 54 b S Properties
b FH Kursdeltagare ||| % NULL NULL b B References =
3 E Kurser ¥® App.config
b Ml Views [Forml.cs
- Ml Stored Procedures > i@ Kursverksamhet.md
I M Functions b il KirsuerkcamhetDat: |
M Synonyms ‘ " »
» ol Types SOLUTL.. |TEAME.. CLASSV..
I Ml Assemblies :: PROPERTIES wow X
b = Servers
I [S] SharePoint Connections
] m b
DATAS.. SERVER.. TOOLB.. JBJWwil0 | STUDENT\talishenas | DACE\KURSVERKSAMHET\K...
Ready Lnl Coll
- . - o
e Expandera i Server Explorer Tables och htgerklicka pa tabellen Kurser.

Vilj Show Table Data. Mata in de tva kurser som namns i kundens berat-
telse pa sid 197. S& har blir blir det:

5

.
=0 Kursverksamhet - Microsoft Visual Studio (Administrator) = | E
File Edit View Project Build Debug Team SQL Data Tools Unit Test Architecture Quick Launch (Ctrl+Q) Pl
Analyze Window Help
Q- |fﬁ'u“|}5tart' Debug "ﬂ||‘n‘r;
 GERVER EXPLORER~ R X dbo.Kurser [Data] ® X dbo.lnstruktorer [Data] » = SOLUTION EXPLOR.. = & X
R | "? +E E.' | 253 (] | b | Max Rows: 1000 - ‘ 02
Data C ti Search Selution Expl C P~
& aT(onnic |onhs . KuriD | Namn Langd InstlD earch Solution Explorer (C 2
4 @ Kursverksamhet.m : ¥ Solution 'Kursverksamhe *
4 Ml Tables » | Inledning till UNIX 3 2 + [Kursverksamhet
I Instrukkdrer 2 Programmering med C++ 5 1 b S Properties
I B Kursdeltagare * NULL NULL NULL MNULL b =W References =
b EH Kurser ¢® App.config
b Ml Views B Forml.cs
I M Stored Procedures b @ Kursverksamhet.n
Ml Functions bl Kircuerkcamhatl:
» Ml Synonyms ‘ m »
b ol Types SOLUTL.. ' TEAME.. CLASS..
Ml Assemblies = PROPERTIES ¢
= Servers
[8] SharePoint Connections
< m 9 |¢ T b
DATA.. SERVE.. TOOL. LocalDB)\w11.0 | STUDENT talishenas | DACE\KURSVERKSAMHETAK...
Ready Lnl Coll

208

I denna tabell har vi bestdmt att kursen Inledning till Unix undervisas av instruktor
med InstID 2. Och nér vi tittar i tabellen Instruktorer kan vi konstatera att det &r Ma-
ria Gonzales som har InstID 2. Dvs Maria Gonzales undervisar kursen Inledning till
Unix. P4 exakt samma satt hittar SQL denna information, om vi t.ex. skickar foljan-
de SELECT-sats till databasen:

SELECT Instruktorer.Namn, Kurser.Namn
FROM Instruktorer, Kurser
WHERE Instruktorer.InstID = Kurser.InstID;

Den hér varianten av SELECT-satsen ar lite mer avancerad sa att vi inte tagit upp
den i bokens introduktion till SQL (sid 168). Konstruktionen kallas JOIN och ger ett
smakprov pd vad SQL kan astadkomma. Villkoret i WHERE-satsdelen kallas JOIN-
villkoret. | FrRoM-satsdelen kopplas ihop tva tabeller — darfér JOIN. Ur méngden av
kombinationer av alla rader frn tabellen Instruktérer med alla rader fran tabel-
len Kurser selekterar JOIN-villkoret bara de rader dér de béda instruktérsnumren
(InstlD) Gverensstammer. Namnen pd instrktorer och deras resp. kurser skrivs ut.
Vi kommer att fa informationen att Maria Gonzales undervisar kursen Introduktion
till Unix och Paul Rogers kursen Programmering med C++.

e Mata in data efter eget godtycke till tabellen Kursdeltagare och &ven fler
data till bade tabellen Kurser och Instruktorer.

e Spara hela projektet med - File &> Save All.

209

5.7 Att forse databasen med funktionaliteter

Databasen vi skapade i forra avsnitt var valdigt enkel. Den hade visserligen tabel-
ler, nycklar och relationer. Men den saknade helt och hallet funktionaliteter, t.ex.
en sokfunktion som hjalper oss att hitta information i databasen. Sadana funktio-
naliteter ska vi bygga in i en ny exempeldatabas som vi kommer att anvénda i detta
projekt. Den ar lagrad i filen AddressBook.mdf som du kan ladda ner filen fran
webbsidan www.taifun.se: Klicka dar pa boken Programmering 2 med C#:s om-
slagsbild, sedan pé lanken AddressBook.mdf. En zip-fil laddas ned: extrahera den.

I det hér avsnittet kommer vi att utveckla projektet AddressBook och l&ra oss att:

e inkludera exempeldatabasen AddressBook.mdf i ett projekt av typen C#
Wwindows Forms Application och anvanda den som lagringsplats for véara
kompisars adressuppgifter.

o lata databasen sjalv skapa sina Labels och Textboxar.
o tillfoga funktionaliteter till databasen.

GoOr sa har:

e Skapa en Windows Forms Application och dop den till AddressBook. An-
dra formfonstrets rubrik och storlek enligt féljande:

Form1:
Egenskap Varde
Text AddressBook
Size 520; 500

e Stang fonstret Server Explorer pa vanstersidan, om det fortfarande &r op-
pet. Oppna istéllet fonstret Data Sources, sa har:

e Skriv i textféltet Search i menyraden langst till hoger Data Sources. Klic-
ka pa den lilla triangeln ovan pa rubrikraden och valj Dock. Klicka i Data
Sources-fonstrets menyrad pa ikonen Add New Data Source. Valj i dia-
logrutan Choose a Data Source Type, Database och klicka pa Next. Valj i
nasta dialogruta Choose a Database Model, Dataset och klicka pa Next.

e | Choose Your Data Connection, klicka pa knappen New Connection... for
att 6ppna dialogrutan Add Connection. Lt i textfaltet Data source sta
Microsoft SQL Server Database File (SqlClient).

e Kilicka pa Browse-knappen och navigera genom filsystemet pa din dator
for att ladda filen AddressBook.mdf till projektet. Klicka pd OK. Visual
Studio vill vill uppgradera databasfilen sa att den blir kompatibel med din
nyaste version av Visual Studio. | sa fall svara bara ja.

210

Du atervander till dialogrutan Choose Your Data Connection, bara att det
nu har tillfogats namnet pa databasfilen du valt i férra steg, namligen Add-
ressBook.mdf. Klicka pa Next. Svara Ja pa fragan om du vill kopiera filen
till ditt projekt.

I nésta dialogruta som heter Save the Connection String to the Application
Configuration File & namnet AddressBookConnectionString redan forvalt
for den forbindelse du skapade ovan. Bocka for lilla rutan Yes, save the
connection as: (om den inte redan ar forbockad) och klicka pa Next.

I Choose Your Database Objects vélj Tables. Expandera Tables samt ta-
bellen Addresses. Behall det forvalda namnet AddressBookDataSet som
DataSet name. Avsluta med Finish.

Du atervander till din ursprungliga miljo. | Solution Explorer har kommit
till: AddressBook.mdf. Markera den, hégerklicka och vélj Open. Server
Explorer-fonstret 6ppnas till vanster med den nya databasens innehall.

Aven Data Sources visar den nya databasens innehdll under DataSet-
namnet AddressBookDataSet: Den har endast en tabell som heter Addres-
ses och har fem kolumner. Expandera tabellen Addresses.

Automatiska Labels och Textboxar

Har vill vi lata databasen sjdlv skapa Labels och Textboxar.

Markera tabellen Addresses i fonstret Data Sources. Observera att det till
hoger om namnet Addresses finns en dropplista. Klicka pa dropplistans
lilla pil for att se alternativen. Klicka pa Details. Pa ytan hander ingenting.
Men i sjalva verket har du valt att ha ett detaljerat grafiskt granssnitt pa
din form, nar du med musen drar tabellen Addresses frdn Data Sources
till formen. Istéllet for att f4 en DataGridView samt en BindingNavigator,
vilket 4r default-alternativet som valdes i vart forsta databasprojekt First-
Database, far du nu en helt annorlunda bild. Gor nu féljande for att se:

Markera tabellen Addresses i Data Sources och dra den med musen (ge-
nom att halla ned den vanstra musknappen) till formen. Det skapas fem
par Label- och TextBox-kontroller som motsvarar tabellen Addresses’ fem
kolumner. Ja, t.o.m. kolumnrubrikerna hamnar som text fran databasen pa
Label-kontrollerna. Aven en BindingNavigator foljer med som lagger sig
under formrubriken. Placera med musen gruppen med fem Labels och fem
Textboxar i den dvre delen av formfonstret, en bit under BindingNavigator,
centrerat horisontellt.

Klicka pa formens lediga plats. Markera TextBoxen som star hdger om La-
beln Address ID. Ga till Properties-fonstret och andra denna TextBox vér-
de for ReadOnly-egenskapen till True, eftersom databaskolumnen Add-

211

ress ID som motsvarar denna TextBox borde vara en Identity vars varden
genereras automatiskt och inte far Gverskrivas av databasens anvandare:

addressIDTextBox:

Egenskap Varde
ReadOnly True

Kompilera och kdr. Observera att tabellen Addresses ar tom. Bilden ne-
dan visar hur resultatet av en korning borde bli. Behall korlaget.

Testa projektet. Inled in- r Y
matningen av en post | Adresstok =1 E
alltid med BindingNavi- 0 of0 R |

gatorns + knapp (Add

New). Mata in t.ex. for- Address ID:

och efternamn, emailad- Fist Name:

ress och telefonnr till Last Name:

dina kompisar. Skriv in o

data i textfélten och av-
sluta posten med Save AR
Data-knappen. Efter att
ha matat in nagra poster
kan du testa hur navige-
ringsknapparna och De-
lete-knappen fungerar.

A

Att lagga till egna funktionaliteter

For att kunna soka efter en viss post i tabellen, genom att t.ex. ange efter-
namnet, maste vi lagga till en SQL-fraga till tabellens TableAdapter-klass.
Ga till fonstret Data Sources, hogerklicka pa tabellen Addresses i och vilj
Edit Data Set with Designer. Databasens diagram dyker upp som bestér av
en anda ruta som representerar tabellen Addresses. Markera den, hdger-
klicka pad AddressesTableAdapter langst ned och valj Add Quer. Table-
Adapter Query Configuration Wizard 6ppnas. Klicka dig fram med Next,
utan att andra nagot, till dialogrutan Specify a SQL SELECT statement.
Skriv in SQL-satsen:

SELECT *
FROM Addresses
WHERE LastName = (@lastname;

@ framfér lastname goOr att @1lastname blir en variabel parameter som
kommer att ersattas av ett varde nar SQL-fragan exekveras. Klicka pa Next
(OBS! inte pa finish!).

212

Andra i Wizardens nésta dialogruta Choose Methods to Generate de for-
valda namnen FillBy och GetDataBy till FillByLastName och GetDataBy-
LastName. Klicka pa finish. Observera att de tvd nya metoder som inne-
haller SQL-satsen ovan (inkl. parametern @lastname), har kommit till
under AddressesTableAdapter.

Atervand till Formi:s design. Sting fonstret Data Sources till vénster.
Oppna istéllet Toolbox frdn huvudmenyraden: View > Toolbox. Expan-
dera All Windows Forms. Hadmta en GroupBox-kontroll till formen. Gor
féljande &ndringar i GroupBox-kontrollens egensakper:

groupBox1:
Egenskap Vérde
Location 20; 260
Size 450; 70
Text Hitta en post via efternamnet:

Impandera (krymp) All Windows Forms och expandera Common Controls.
Markera GroupBox-kontrollen i formen. Dubbelklicka i Toolbox pa kon-
trollen Label sa att den hamnar i GroupBoxen. Gor foljande andringar i
Label-kontrollens egensakper:

labell:
Egenskap Vérde
Location 6; 38
Text Last Name

Markera GroupBox-kontrollen i formen. Dubbelklicka i Toolbox pa kon-
trollen TextBox sa att den hamnar i GroupBoxen. Gor foljande andringar i
TextBox-kontrollens egensakper:

textBox1.:
Egenskap Varde
Location 100; 35
Size 200; 30

Markera GroupBox-kontrollen i formen. Dubbelklicka i Toolbox pa kon-
trollen Button s& att den hamnar i GroupBoxen. Gor féljande andringar i
Button-kontrollens egensakper:

buttonl:
Egenskap Varde
Location 360; 30
Size 75; 35
Text Sok

213

e Ligg dessutom en Aterstall-knapp under GroupBoxen langst ned i formen.
Dvs markera formen. Dubbelklicka i Toolbox pa kontrollen Button. Gor
féljande andringar i Button-kontrollens egensakper:

Button2:
Egenskap Vérde
Location 190; 375
Size 130; 35
Text Aterstall

Kompilera och kor. Sa har borde resultatet av en kérning bli:

f ol Adreszbok l ==l —‘&-r
0 of 0 ar [~]
Address 1D:
First Name:
Last Name:
Email:

Phone Number:

Hitta en post via eftemamnet:

Last Name Sok

Aterstal

Just nu kan man bara lagga in poster (rader). Sok- och Aterstall-knapparna ger inget
resultat eftersom det inte finns ndgon kod bakom dem. Stang kérningen och ater-
vand till designlaget. For att ge liv at Sék- och Aterstall-knapparna gor sa har:

e Dubbelklicka pd Sok-knappen och lagg in kod i kroppen till handelse-
metoden buttonl_Click () i klassen Form1l enligt nedan.

e For att kunna fortsatta med att navigera genom tabellens alla rader, efter
att man sokt en speciell post via efternamnet, dubbelklicka pa Aterstall-
knappen och lagg in kod i kroppen till hdndelsemetoden button2 -
Click () i klassen Form1 enligt nedan.

214

// Forml.cs 1 projektet AddressBook

// Data frdn en databas kan visas, ldggas till eller tas bort
// Funktionalitet: Skickar en SQL-frdga fran en Button

// Séker via efternamn och visar den sékta radens innehdll
using System;

using System.Windows.Forms;

namespace AddressBook

{
public partial class Forml : Form
{
public Forml ()
{
InitializeComponent () ;
}
private void addressesBindingNavigatorSaveItem Click(
object sender, EventArgs e)
{
this.Validate() ;
this.addressesBindingSource.EndEdit () ;
this.tableAdapterManager.UpdateAll
(this.addressBookDataSet) ;
}
private void Forml Load(object sender, EventArgs e)
{
this.addressesTableAdapter.Fill
(this.addressBookDataSet.Addresses) ;
}
private void buttonl_Click (object sender, EventArgs e)
addressesTableAdapter.FillByLastName (
addressBookDataSet.Addresses, textBoxl.Text)
}
private void button2 Click (object sender, EventArgs e)
addressesTableAdapter.Fill
(addressBookDataSet.Addresses) ;
textBoxl.Text = "";
}
}
}

o Kompilera och kdr. Mata in ett antal poster i databasens tabell Addresses.
Testa applikationens alla méjligheter.

215

Ovningar till kap 5

Bakom lanken Databaser hittar du kap 5:s PowerPoint-bilder.

| extra materialet Mangder kan du ldsa om méngder och méngdoperationer.

5.1

52

53

En fabrik tillverkar tuschpennor i tre olika storlekar: liten, mellan och
stor och i fyra olika farger: b4, svart, réd och gron.

Lat A vara mangden av alla storlekar och B mangden av alla farger av de
tuschpennor som fabriken tillverkar.

a) Las om cartesiska produkten pa sid 82. Bilda den cartesiska produkten
A X B.

b) Hur méanga olika typer av tuschpennor tillverkar fabriken?

c) Beskriv fabrikens sortiment i en tabell.

En butik som koper av denna fabrik, lagerfor endast mellanstorleken i al-
la farger och storleken liten i bla. Lat R beteckna mangden av de ordnade
par som butiken lagerfor.

a) Bilda mangden R.
b) Hur méanga olika typer av tuschpennor lagerfor butiken?
c) Stall upp relationen R (butikens sortiment) i tabellform.

En mobeltillverkare producerar fem mébeltyper: skap, bord, séng, stol,
soffa i tre olika traslag: bjork, ek, bok. Mdblerna tillverkas oljade, malade
eller obehandlade.

En av tillverkarens kunder, en mobelaffar lagerfor bord och stolar av
bjork eller ek som &r oljade eller malade.

a) Hur manga modeller lagerfér mobelaffaren?
b) Stéll upp en tabell dver de mébelmodeller (typ, traslag, behandling)
mobelaffaren lagerfor.

En bostadsférening lagrar data om sina medlemmar i en tabell, kallad
Members. Tabellens forsta 6 rader ser ut sa har:

No First name Last name : Birth date
1 Peter Larsson 1971
2 {Emma Carlsson 1949
3 ilngrid Lundquist 1998
4 ' Hans Lundquist 2000
5 Emma Pettersson 1976
6 Germund Dahlquist 1980

Skriv en SQL-sats som ger en lista 6ver de medlemmar som:

a) heter Emma i fornamn. Listan ska innehalla all tillganglig information
om medlemmarna. Visa dven svaret pa din SQL-fraga.

216

http://www.taifun.se/images/stories/Databaser.pdf
http://www.taifun.se/images/stories/Mangder.pdf

5.4

5.5

5.6

5.7

b) heter Lundquist i efternamn. Listan ska innehalla endast medlemmar-
nas for- och efternamn. Visa dven svaret pa din SQL-fraga.

c) ar fodda senare an 1975. Listan ska innehalla endast medlemmarnas
medlemsnr. och fodelsedr. Visa dven svaret pa din SQL-fraga.

Nar man exekverar projektet FirstDa-

5 FirstDatabase - o x

tabase (sid 179) med de uppgifter som .

. . Lo N 1o b M P X W
anges i projektets beskrivning far man —_— ——— -
fonstret som ar avbildad till hoger. » [- 2
Gor foljande &ndringar i projektet for ; -
att modifiera och vidareutveckla det: : e o
a) Andra formfonstrets storlek for att

vid exekvering se hela innehéllet i
tabellen Authors utan att behdva justera utskriftsfonstret efterat.

b) Modifiera projektet sé att det vid exekvering visar innehallet i tabel-
len Titles istallet for tabllen Authors. Se till att navigeringsmenyn
(langst upp) &r kvar.

c) GoOr samma sak som i b) med tabellen AuthorISBN.

Ladda ned databasfilen AddressBook.mdf pa samma satt som du gjorde
med Books.mdf. Skapa ett nytt projekt Ovn_5_5 i Visual Studio och ge-
nomfor alla steg som i projektet FirstDatabase (kursboken, sid 179-185).
Vilket innehall finns i databasfilen AddressBook.mdf?

I projektet SQLclient (sid 185) hat vi skrivit ndgra SQL-satser och skickat
dem till servern via en en ComboBox’ dropplista. Skriv ytterligare SQL-
satser och exekvera dem i projektet SQLclient. De ska visa foljande delar
av databasen Books.mdf:

a) Visa alla boktitlar ordnade efter EditionNumber.

b) Visa alla bocker med Copyright 2008 ordnade efter boktitlar.
¢) Visa hela innehallet i tabellen Authors.

d) Visa autorerna ordnade efter deras efternamn.

Vidareutveckla projektet Kursverksamhet (sid 198-209) genom att lagga
till ytterligare data till de befintliga tabellerna Kurser, Kursdeltagare och
Instruktorer. Visa tabellernas innehdll i en DataGridView-kontroll nar man
kor projektet, pd samma satt som i projektet SQLclient (sid 185).

a) Lé&gg till ytterligare tre valfria kurser till tabellen Kurser.

b) L&gg tio elever i tabellen Kursdeltagare. Tilldela varje elev till endast
en kurs.

c) Lagg till ytterligare tva instruktorer till tabellen Instruktérer. Avgor
sjélv vilka instruktérer ska undervisa i vilka kurser.

d) Visa eleverna ordnade efter deras férnamn.

217

5.8 Exekvera projektet AddressBook (sid 210) och mata in via det grafiska

59

granssnittet foljande data till tabellen Addresses:

First name ' Last name Email Phone Number
Hans Riesel hriesel@kth.se 073 765 28 32
Emma Carlet ecarlet@Ibs.se 07032956 79
Ingrid Mellinder : imellind@ih.se 08 792 37 54
lan Cohen icohen@kth.se 073 562 29 02
Erik Pettersson epetter@Ibs.se 070 562 30 69
Germund Dahlquist _ gdahlg@kth.se 070 863 92 12

Se till att du inleder inmatningen av varje post med BindingNavigatorns +
knapp (Add new) samt avslutar med Save Data-knappen.

a) Anvand sedan Sok-knappen for att ta reda pa Germunds emailadress.

b) Gor samma sak med Eriks telefonnummer.

¢) Tabort Ingrids post fran tabellen och lagg istéllet till en valfri post.

d) Lagg till ytterligare en SQL-fraga till tabellen Addresses som letar ef-
ter en post via férnamnet.

e) Ta reda pd med Sok-knappen lans efternamn.

Human Resources (Projekt) Studera databasen HR (Human Re-
sources) vars diagram visas pa néasta sida. Diagrammet visar sju tabeller:
Varje ruta representerar en tabell med resp. kolumner. De kolumn(er)
som bildar tabellens primarnyckel star i fet stil. Identifiera varje tabells
primarnyckel, alla frammande nycklar. Varje frammande nyckel ger
upphov till en relation mellan databasens tabeller. Forsok att l&sa och
beskriva relationerna 1-10 enligt relationsdatabasmodellen (sid 159).

218

HR DEPARTMENTS LOCATIONS
department_id . @ location_id
memme e department_name 7)%* strest_address
@ managel_id postal_code
A location_id city
N state_province
JOB_HISTORY @, 1® country id
employee_id ’/'
start_date - | EMPLOYEES @ @
end_date 7_ employee_id -
job_id first_name ﬂ COUNTRIES
depanment_id last_name L country_id
email country_name
\‘L/ phone_number region_id
' hire_date
JOBS iob_id R
Jon_id @ cunm?iasl;lgn pct } ®
ob_tle N rmanaget_id REGIONS
min_salary department_id reglon_id
max_salary = region_narme

5.10 Kaffeautomat (Projekt) Du far i
uppdrag att programmera en kaffeauto-
mat som ska anvdndas i en cafeteria.
Uppdragsgivaren forvantar sig ett pro-
fessionellt program som latt kan uppda-
teras, om man skulle byta till en nyare
automatmodell om nagot ar. Darfor anli-
tar man en objektorienterad programme-
rare som &ven kan databaser. Skriv ko-
den s& generellt som majligt sa att pro-
grammet l4tt kan modifieras for vilken
varuautomat som helst, dessutom Ilatt
kan Oversattas till vilket programme-
ringssprak som helst.

Projektet gar ut pa att simulera en kaffeautomat med grafiskt granssnitt
och en databas som lagrar drycksortimentet samt priserna. Man ska kun-
na variera sortimentet dvs lagga till eller ta bort dryck med tillhérande
pris — en post — frdn sortimentet, genom att &dndra databasen utan att be-
héva &ndra programmet.

Borja utan databas

Anvand en array av kontroller for dryckernas namn och en annan array
for dryckernas pris. Nar programmet fungerar och du har lart dig han-
teringen av databaser kan du koppla kaffeautomaten till en databas. Pro-
grammet ska innehalla en betalningsdel med majlighet att kunna betala

3 Kaffeauto I& med fyl’a Olika
Exit Reset DataBase myntS|ag 10 kl’,
5 kr, 1 kr, 50 ore.

tomat ' 1
% Kaffeautoma % Det grafiska
— granssnittet kan
0| tex. se ut som
pa bilden till

__ Mocka | vanster.

Choklad
Programmet ska

EkpicE S ha mojligheten
Cappuchino MyponSoppa att kunna vélja

dryck ur ett sor-

FruktSoppa timent med, sdg,
fem olika dryc-
C hi 12 K
_Commuctio | ISP ker samt deras
Kaffe priser.

Reckid En vaxel- och ser-
veringsdel ska in-

219

gd. Efter val av dryck samt betalning ska ratt vaxel lamnas tillbaka. En li-
ten bild som forestéller en kopp ska visas upp. | exemplet pa bilden har
Cappuchino valts som dryck och ett 10 kr- samt tva 1 kr-mynt har betalats.

Grénssnittet ska ha en menyrad med en Exit-funktion for att avsluta och
en Reset-funktion for att nollstélla kaffeautomaten.

Komplettera programmet med att ta hand om en eventuellt felaktig eller
otillracklig betalning fran anvandarens sida.

Vaxelbeloppet &r ett decimaltal i programmet. Men automaten behdver
veta” hur minga av varje myntslag som ar tillatet i automaten — endast
10 kr, 5 kr, 1 kr och 50-6ringar “ — den ska ge tillbaka. Ett véxelbelopp av
t.ex. 12,50 maste omvandlas i ett 10 kr- (eller tva 5 kr-), tva 1 kr-mynt och
en 50-6ring. Dessa antal ar heltal. Det decimala véaxelbeloppet maste de-
las upp i automatens tilldtna mynt’system”. For att 4stadkomma denna
omvandling, kan du anvénda dig av den algoritm som beskrivits tidigare.
Den skiljer sig endast i siffror fran den algoritm som anvands for att om-
vandla ett antal dagar till antal ar, manader, veckor och restdagar. Nyc-
keloperationen for alla sddana omvandlingar & modulooperatorn %.

Lagg till databaskoppling

[Dryck EEITST)
Dirypck nari: ICappuching
Pris: 112
Add | Delete | Refrezh Update | Cloze |

4| 4 |Recard B b Hl

For att underhalla kaffeautomaten Gver langre tidsperioder, t.ex. for att
kunna &ndra sortiment och/eller priser, utan att behdva skriva och kom-
pilera om C#- koden, &r det 1ampligt att lagra sortiment- och prisinforma-
tionen i en databas och lata C#-programmet hamta aktuell, alltid uppdate-
rad information fran databasen.

* Inkluderingen av 50-6ringen i myntbetalningen beror inte pa nostalgi utan snarare pa inter-
nationalisering. Vi vill halla méjligheten 6ppen for en dverforing av programmet till andra
lander dar automater med myntbetalning fortfarande finns. Aven ett ev. byte till Euro eller
andra valutor, ddr den halva valutaenheten finns kvar, ska vara mojligt. Omvandlingen av
véxelbeloppet till automatens myntsystem inkluderar en programmeringsteknisk finess som
kan vara vdrd att lara sig. Logiken inkl. anv&ndningen av modulooperatorn % ligger till
grund aven for en generell omvandling av det decimala talsystemet till andra system.

220

Nér allting fungerar felfritt, kan du ersatta arraysna for namn och pris
med tabeller i en databas. Databaskopplingen ska finnas i en separat form
dér det ska finnas mojligheten att radera, lagga till och editera posterna i
databasen.

Léagg till i menyraden ett menyval for att ladda databasformen.

Utskriften av menyn samt priserna som visades i borjan inte behdver
hardkodas i C# utan blir resultat av en hamtning (SELEcT-sats) fran data-
basen. P4 sa satt kan man alltid aktualisera menyn genom att uppdatera
databastabellen.

Fortsatt med att registrera &ven varje transaktion i automaten dvs lagga in
den med en INSERT-sats i en annan tabell som sedan kan anvandas bade
for kontroll av automaten och som underlag fér ekonomisk redovisning.
Avgor sjalv vilka uppgifter som &r l&mpliga att registreras. Skriv dina
SQL-satserna sa att de kan inbaddas i C#-kod.

Kaffeautomatkonceptet kan generaliseras inte bara till andra automater
utan aven till sma och stora butiker eller varuhus.

221

Fullstandiga l6sningar till 6vningar (Facit)

I programmering finns alltid flera mdjliga I6sningar till en uppgift. D&rfor &r det, som slar-
vigt kallas for l6sningar, i sjilva verket endast 16sningsforslag. Till projektuppgifter eller
uppgifter relaterade till ett projekt ges inga l6sningsforslag. Istéllet finns det i projektens ly-
delse ofta en utforlig ledning, ibland en algoritm till 16sningen.

Kapitel 1 Algoritmer och programmering, sid 56

Ovn 1.1-1.20 i kap 1 bestar av fragor vars svar kan hittas i boken pa sidorna 6-14.

Ovn 1.21 Foljande pseudokod beskriver algoritmen Hartvatt:

Start Hartvatt

BIot haret 1

sA LANGE haret kanns smutsigt 2
massera in shampo- - - - - - - - - 4 -=> 2
SKOlj= = = = = = e e e - -—==> 2

oM solen skiner 3

14t héret sjalvtorka- = = = = = = = = o --> 3;
ANNARS

anvénd hdrtorken- - - - - - - - - - L_-> 3p
Slut Hartvatt

a) Vilka delar av pseudokoden &r instruktioner, vilka ar villkor och vilka ar kontrollstrukturer?
Forklara ditt svar.

Svar:

Allt som ar tryckt i normal stil i texten ovan, ar instruktioner, allt som star i kursiv stil, ar
villkor och allt som &r skrivet i fet, versal stil (annorlunda typsnitt) &r kontrollstrukturer.
Start och slut har en sérstéllning, de ar varken det ena eller det andra, utan markerar algo-
ritmens bdrjan och slut.

Instruktioner &r de delar av texten som ska utféras. Man skulle kunna kalla dem &ven kom-
mandon. Villkor kan inte utforas, utan endast testas vars resultat endast kan vara sant eller
falskt. De kan likstéllas med fragor vars svar endast kan vara ja eller nej. Svaren avgor vad
som ska goras, dvs vilka (under)instruktioner ska utforas. | hartvattalgoritmen finns endast
tva villkor: haret kianns smutsigt och solen skiner. De &r kopplade till kontrollstrukturerna
sA LANGE och oM-aANNARS. Tillsammans styr de algoritmens forlopp.

Kontrollstrukturer ar nyckelord vars logiska innebdrd &r avgdrande for forloppet. si
LANGE:s logiska betydelse skiljer sig fran oM-annars: Det forsta inleder en repetition,
medan det andra formulerar ett val mellan tva alternativ: sA LANGE haret kianns smutsigt
innebar att man méste massera in shampo och skélja ev. flera gédnger, medan om solen skiner
betyder att man antingen later haret sjalvtorka eller anvander hartorken, beroende pa om so-
len skiner, men endast en gang.

b) Dela in instruktionerna i huvud- och underinstruktioner.

Hela algoritmen kan delas in i tre huvud- och fyra underinstruktioner: | pseudokodens text
ovan &r de tre huvudinstruktionerna markerade med 1, 2 och 3. De fyra underinstruktionerna

222

2a, 2b, 3a och 3b dr indragna for att visa att 2a, 2b tillhér huvudinstruktion 2 och att 3a, 3b &r
delar av huvudinstruktion 3.

c) Rita ett flodesschema till pseudokoden ovan.

Utgaende fran analysen av pseudokoden Hartvatt i a) och b) ges féljande forslag till flo-
desschema som &r en ren dversattning av pseudokoden — en annan form av samma algoritm :

BIot héret

Loop

Massera in
schampo

Sklj

Nej |

Ja
Nej
A 4
Anviind hartork Lat sjilvtorka
!

223

Ovn 1.22 Foljande algoritm — It oss kalla den Kalle-algoritmen — ar formulerad pa
vanligt sprak:

Pa vardagar gar Kalle upp. Han tvattar sig, om mamman tittar pa.
Pa sondagar sover Kalle vidare tills mamman ropar ho-
nom till frukost, i sa fall gor han som pa vardagar.

a) Rita flodesschemat till Kalle-algoritmen. Anta att I6rdag &r en vardag.

Sova vidare

224

b) Oversitt flodesschemat till pseudokod.

Start Kalle
oM det &r séndag
sover Kalle vidare

TILLS mamma ropar till frukost
Kalle gar upp
oM mamma tittar pa

tvéttar han sig
Slut Kalle

¢) Finns det i Kalle-algoritmen mdjligheten till en evighetsloop? Nar
skulle den rent teoretiskt kunna intraffa? Hur kan den férhindras?

Kallealgoritmen innehaller méjligheten till en evighetsloop som kan intraffa om mamma al-
drig ropar till frukost. Méjligheten till en evighetsloop finns i alla loopar.

Om den verkligen intraffar eller €], beror pa hur loopens avslutningsvillkor ar formulerat och
hur villkoret realiseras. For att undvika evighetsloop maéste villkorets sanningsvérde dndras
under algoritmens realisering. Dvs mamma maste f& chansen att ropa till frukost.

Ovn 1.23 Ar féljande pseudokod logiskt identisk med Kalle-algoritmen frén évn 1.22?

Start Kanske_Kalle?
oM det &r sdndag
sover Kalle vidare

TILLS mamma ropar till frukost
ANNARS

gér han upp
oM mamma tittar pa
tvéttar han sig
Slut Kanske_Kalle?

Nej, denna pseudokod &r logiskt inte identisk med Kalle-algoritmen fran 6vn 1.22. Skillna-
den &r att Kalle enligt denna pseudokod aldrig gar upp pa sondagar, darfor att den logiska
inneborden av tvavagsvalet oM-ANNARS skiljer sig fran den enkla om-satsen (utan ANNARS).
oM och ANNARS utesluter varandra, dvs nar det verkligen ar sondag, utelsluts det som star
under ANNARS. FOrst nar man stryker ANNARs fran denna pseudokod blir den logiskt identisk
med Kalle-algoritmen.

Ovn 1.24 Rita flodesschemat till féljande pseudokod:

Séatt pa radion

Vilj en kanal och lyssna

sA LANGE du inte har hittat ett bra program
byt kanal

lyssna

Fortsétt att lyssna pa det valda programmet
Sténg av radion

225

| Sétt pa radion |

!

| Vili en kanal och lvssna |

Y

Program
b?a? Byt kanal

\/

Lyssna

Y
| Fortsatt att lyssna pa det valda programmet |

\ i

| Sténa av radion |

Ovn1.25 Skriv ett C# program som laser in tva heltal, multiplicerar dem med varan-
dra och skriver ut resultatet blandat med forklarande text. Om du t.ex. matar in 3 till det
forsta och 4 till det andra heltalet, ska programmet skriva ut: 3 ganger 4 ar 12. Utveckla
programmet vidare med ytterligare rakneoperationer, kanske sa smaningom till en liten
kalkylator. tioner, kanske sa smaningom till en liten kalkylator, se 1.29 Kalkylatorn.

using System;
class Ovn_1 25

{
static void Main()
{
Console.Write ("\n\tMata in ett heltal:\t\t"); // Ledtext
int nol = int.Parse(Console.ReadLine()); // Inldsning
Console.Write("\n\tMata in ett heltal till:\t");
int no2 = int.Parse(Console.ReadLine()) ;
Console.WriteLine ("\n\n\t" +
nol + " plus " + no2 + " & " + (nol + no2) + "\n\t" +
nol + " minus " + no2 + " &r " + (nol - no2) + "\n\t" +
nol + " gdnger " + no2 + " &r " + (nol * no2) + "\n\t" +
nol + " heltalsdividerad med " +
no2 + " 4r " + (nol / no2) + "\n\t" +
nol + " modulo " + no2 + " &r " + (nol % no2) + "\n\t");
}
}

226

Ovn 1.26 Rita ett flddesschema till foljande pseudokod:

Start Vinterkladsel 1
L&s av temperaturen
oM temperatur< 0
ta sjal, moéssa och handskar
ANNARS OM temperatur < 5
ta sjal och mossa
ANNARS OM temperatur < 10
ta sjal
ANNARS
slipper du vinterkladsel
Slut Vinterkladsel_1

Anvand dina programmeringskunskaper for att koda pseudokoden ovan och
flédesschemat du ritat, till ett C# program. L&s in ett varde for temperatur
och lat programmet avgora val av kladsel genom att skriva ut "Ta sjal, mos-
sa, handskar... " eller liknande. For kontrollstrukturen flervégsval kan du
anvanda if-else-stegen som kodas i C# pd samma sétt som i C++.

Ett flodesschema till pseudokoden Vinterkladsel_1 kan se ut sa har:

Lé&s av temperaturen

Ta sjal, mossa, handskar >

Ta sjal och méssa >

Tasjal >

Du slipper vinterkladsel >

227

using System;
class Ovn_1_26

{
static void Main()
{
Console.Write("\n\tMata in temperatur:\t");
int temperatur = int.Parse(Console.ReadLine());
if (temperatur < 0)
Console.WriteLine ("\n\tTa sjal, mdssa och handskar!\n");
else if (temperatur < 5)
Console.WriteLine ("\n\tTa sjal och méssa'\n");
else if (temperatur < 10)
Console.WriteLine ("\n\tTa sjal!\n");
else
Console.WriteLine ("\n\tDu slipper vinterkl&adsel.\n");
}
}

A A

Ovn 1.27 Algoritmen i évn 1.26 ovan kan formuleras med féljande pseudokod:

Start Vinterkladsel_2

Lé&s av temperaturen

vaLg fall ur
temperatur < 0: ta sjal, mdssa och handskar
temperatur < 5: ta sjal och mossa
temperatur < 10: ta sjal
Annars: slipper du vinterkladsel

Slut Vinterkladsel 2

Rita flédesschemat till pseudokoden ovan och undersok den logiska likheten mellan flodes-
scheman i évn 1.26 och 6vn 1.27.

Flodesschemat till pseudokoden Vinterkladsel 2 &r identisk med flodesschemat pa forra sidan.
Dvs Vinterkladsel_1 och Vinterkladsel_2 har samma flodesschema, eftersom bada &r logiskt
identiska och beskriver samma algoritm. Endast pseudokodens formulering &r annorlunda.

A A

Ovn 1.28 Collatz algoritmen har modulariserats med void-metoden Collatz () som
ar definierad i klassen collatz_mod, se sid 42. Modularisera Collatz algoritmen med en me-
tod med returvarde istéllet. Dvs definiera en metod public static int Collatz()SOm
endast returnerar ETT tal i Collatz-sekvensen. Anropa metoden frén en annan klass’ Main ().

Tips: Placera loopen samt utskriftssatsen i huvudprogrammet som anropar meto-
den. For att dataflédet mellan loopen och metoden ska fungera tillampa referens-
anrop.

// Collatz return.cs

// Definierar metoden Collatz () med returvdrde
// Metoden berdknar endast ETT tal i sekvensen
// Parametern n dr av typ referens till int
using System;

228

class Collatz_return
{
public static int Collatz(ref int n)
{
if (n % 2 == 1)
n=(3*n+1);

else
n=(/2);
return n;

// Collatz return Test.cs
// Ldser in startvdrdet till Collatz algoritmen
// Anropar metoden Collatz() definierad i klassen Collatz return,
// 1 en loop. Referensanrop tilldmpas pd metoden
using System;
class Collatz_Test_return
{
static void Main()
{
Console.Write("\n\tMata in ett positivt heltal:\t");
int number = int.Parse (Console.ReadLine()) ;
Console.Write("\n\t" + number + "\t"); // Startviardet

while (number '= 1) // Anropet i en loop
Console.Write(Collatz_return.Collatz (ref number) + "\t");

Console.WriteLine ("\n") ;

Kapitel 2 Logik for blivande programmerare, sid 83

Ovn 2 1

Skriv ett program som med hjdlp av en ndstlad for-sats skriver ut en

rektangel fylld med stjdrnor (*) till konsolen, bestdende av 9 rader
och 20 kolumner. FO6rsdék att numrera raderna och kolumnerna utan att
forstéra helhetsbilden.

using System;
class Ovn_2 1

{
static void Main()
Console.WriteLine ("\n\tx = \t12345678901234567890\n") ;
for (int y=1; y<=9; y++) // Yttre slinga ordnar
{ // 9 rader med radbyte.
Console.Write ("\ty=" + y + '"\t'");
for (int x=1; x<=20; x++) // Inre slinga ritar en
Console.Write('*"') ; // rad av 20 stjdrnor.
Console.WriteLine() ; // Radbyte 1 rektangeln
}
Console.WriteLine() ; // Radbyte utanfdér
}
}

229

Ovn_2 2.cs

Selektera (skriv ut) fran den stjdrnfyllda rektangeln fran &vn 2.1
endast den 5:e raden och den 7:e kolumnen sd att det visas ett kors.
L3gg in i den inre for-slingan som skriver ut en rad, en if-else-
sats som 1 varje varv skriver ut en stjdrna om ett sammansatt
villkor med ELLER &dr uppfyllt, annars ett mellanslag.

Hur blir det om du byter ut ELLER mot OCH?

using System;

class Ovn_2_2

{
static void Main()
{
Console.WriteLine ("\n\tx = \t12345678901234567890\n") ;
for (int y=1; y<=9; y++) // Yttre slinga ordnar
{ // 9 rader med radbyte.
Console.Write("\ty=" + y + '\t');
for (int x=1; x<=20; x++) // Inre slinga ritar en rad
if (y==5 || x==7) // Sammansatt villkor:ELLER
// if (y==5 && x==7) // OCH ger skdrningspunkten
Console.Write('*');
else
Console.Write(' ') ;
Console.WriteLine() ; // Radbyte 1 rektangeln
}
Console.WriteLine() ; // Radbyte utanfdér
}
}

kA ok ko ko k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ko ok ko A ok ok ok o Ak A

Ovn 2 3

Omvandla korset fran 6vn 2.2 till dess negativ, dvs skriv ut alla
stjdrnor fran &évn 2.1 utom den 5:e raden och den 7:e kolumnen.
Anvdnd den logiska operatorn NEGATION. Negera en gang hela det sam-
mansatta ELLER-villkoret frdn &vn 2.2 och en gang det sammansatta
villkorets delvillkor. I bada fall borde du f& samma resultat.

using System;
class Ovn_2 3

{
static void Main()
{
Console.WriteLine ("\n\tx = \t12345678901234567890\n") ;
for (int y=1; y<=9; y++)
{
Console.Write ("\ty=" + y + '\t'");
for (int x=1; x<=20; x++)
if (' (y==5 || %==7)) // NEG.av ammansatt villkor
// if (! (y==5) && ! (x==7)) // NEGATION av delvillkoren
Console.Write('*');
else
Console.Write(' ');

230

Console.WriteLine() ;

}

Console.WriteLine() ;

}

A A
Ovn_2 4

Skriv ett program som ldser in tre tal, hittar och skriver ut det
stérsta av dem. L&s problemet genom att anvdnda tre enkla if-satser
med sammansatta villkor och den logiska operatorn &&. P4 sa sdtt kan
du 1 varje if-sats jdmféra ett tal med de tvad andra. Varfér maste va-
riabeln som lagrar det stérsta talet, initieras vid deklarationen?

using System;
class Ovn_2_4

static void Main()

{ int max = 0; // Initiering vid deklarationen
Console.Write ("\n\tMata in nol:\t");
int nol = int.Parse(Console.ReadLine());
Console.Write("\n\tMata in no2:\t");
int no2 = int.Parse(Console.ReadLine())
Console.Write ("\n\tMata in tal3:\t");
int tal3 = int.Parse(Console.ReadLine()) ;
if ((nol > no2) && (nol > tal3l))
max = nol;
if ((no2 > nol) && (no2 > tal3l))
max = no2;
if ((tal3 > nol) && (tal3 > no2))
max = tal3;
Console.WriteLine ("\n\tDet stérsta talet &r " + max + '\n');
}

}

Variabeln max maste initieras vid deklarationen, fér annars kan ko-
den inte kompileras pga villkorlig initiering av max i if-satserna.

A A

Oovn 2 5

Skriv ett program som skriver ut sanningsvdrdet till det enkla
villkoret a < 10 ddr a 4r en heltalsvariabel vars vdrde ldses in.
Testa ditt program genom att mata in t.ex. 9, 10 resp. 11.

using System;
class Ovn_2 5

{
static void Main()
Console.Write ("\n\tAnge ett heltal:\t");
int a = int.Parse(Console.ReadLine());
Console.WriteLine("\n\t" + a + " < 10 &r " + (a < 10) + '\n');
}
}

231

KA A

Ovn_2_ 6a
Bestdm sanningsvdrden hos de féljande logiska uttrycken,
férst med papper och penna, sedan 1 ett C#-program:
a) (8 < 7) && (true || false)
using System;
class Ovn_2_6a

{
static void Main()
Console.WriteLine (
"\n\tUttrycket (8 < 7) && (true || false) &r " +
((8 < 7) && (true || false)) + '\n');
}
}

A A

Ovn_2_6b
Bestdm sanningsvdrden hos de féljande logiska uttrycken,
férst med papper och penna, sedan i1 ett C#-program:
b) (3 < 3.01) || (!(0==0) && true)
using System;
class Ovn_2_ 6b

{ static void Main()
Console.WriteLine (
"\n\tUttrycket ! (3 < 3.01) || (!(0==0) && true) &r " +
('(3 <3.01) || ('(0==0) && true)) + '\n');
}
}

kA ok ko ko k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ko ok ko ok ok ok ok ko ko A ok kA

Ovn_2 6c.cs
Bestdm sanningsvdrden hos de féljande logiska uttrycken,
férst med papper och penna, sedan 1 ett C#-program:

c) (true || !false) && ! (! (4*5==1) && false)
using System;
class Ovn_2_ 6c

static void Main()
Console.WriteLine ("\n\tUttrycket" +

" (true || 'false) && !'(!(4*5==1) && false) ar " +
((true || 'false) && !'(!'(4*5==1) && false)) + '\n');

}

KA A

Oovn 2 7

F6ljande enkel version av Gissa tal-spelet tillater endast en spel-
omgang (utan loop). F&r att koda ett trevdgsval ndstlar programmet
en if-else-sats 1 en annan if-else-sats:

232

// GuessIfElse.cs
// Flervdgsval med ndstlad if-else-sats
using System;

class GuessIfElse

{
static void Main()
{
Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");
int guessedNo = int.Parse(Console.ReadLine()) ;
if (guessedNo <= 17)
if (guessedNo == 17)
Console.WriteLine ("\n\tGrattis, du har " +
"gissat ratt!\n");
else
Console.WriteLine ("\n\tFér litet!\n");
else
Console.WriteLine ("\n\tFér stort!\n");
}
}

Modifiera programmet ovan genom att anvdnda logiska operatorer och
sammansatta villkor 1 syftet att férenkla ndstlingen. Det nya pro-
grammet ska gbra samma sak som GuessIfElse. Bedém i slutet sjdlv om
det har blivit mer férstdelig kod.

using System;
class Ovn_2_ 7

{

static void Main()

{
Console.Write ("\n\tGissa ett tal mellan 1 och 20:\t");
int guessedNo = int.Parse(Console.ReadLine()) ;

if ((guessedNo < 17) || (guessedNo > 17))
if (guessedNo < 17)
Console.WriteLine ("\n\tFér litet!\n");
else
Console.WriteLine ("\n\tFér stort!\n");
else

Console.Write ('\u0007');
Console.WriteLine ("\n\tGrattis, du har gissat ratt!\n");

}

A A

Oovn 2 8

Modifiera programmet PasswdCaps (sid 75) genom att ldgga in kod

som begrédnsar antalet inloggningsférsék till t.ex. 3. Overskrider
man denna grdns ska programmet avslutas efter att ha skrivit ut ett
meddelande av typ "Du har férsékt 3 ganger. Nu avslutas programmet!"
Tips: Anvdnd en if-sats som avslutar programmet genom att bryta loo-
pen med break.

using System;
class Ovn_2 8

{
233

static void Main()

{
String input;
bool wrongPasswd;
int antalForsok = 0;
do
{
antalForsok++;
Console.Write ("\n\tSkriv ditt lésenord:\t"):;
input = Console.ReadLine() ;
wrongPasswd = ! (input == "hemligt") &&
! (input == "HEMLIGT") ;
// wrongPasswd = ! (input == "hemligt" || // Alternativt
// input == "HEMLIGT") ;
if (wrongPasswd && (antalForsdék > 2))
Console.WriteLine ("\n\tDu har férsdkt 3 ganger. " +
"Nu avslutas programmet!\n") ;
break;
if (wrongPasswd)
Console.WriteLine ("\n\tFel l&senord. Fdrsdk igen!\n");
} while (wrongPasswd) ;
if ('wrongPasswd)
Console.WriteLine ("\n\tDet &r OK. Nu &r du inloggad!\n");
}

}

AAAAA A

Ovn 2 9

Operationer med mdngder kan illustreras grafiskt. Hur man gdr det
kan du ldsa i avsnitt 2.5 Midngdldra och logik pa sid 78. Diagrammen
du ser didr kallas foOr Venndiagram efter den brittiske logikern John
Venn. Med Venndiagram kan man illustrera d&dven logiska lagar ndr de
dr skrivna 1 mdngdnotation, didr en mdngd motsvarar en utsaga.

De Morgans lagar togs upp 1 kapZ2 (sid 77) & kan da formuleras sd h&r:

- (p OCH g) o - p ELLER - q

- (p ELLER q) o - p OCH = g

ddr p och g dr utsagor, — dr symbolen fd6r logisk negation och « sym-
bolen fér logisk ekvivalens. S& hdr kan man skriva om dem till sam-
band mellan médngder:

Anta att A och B &r midngder och [&r symbolen fér komplementmdngden, I
fér snittet och U fér unionen av tva mdngder (se definitionerna i av-
snitt 2.5 Mingdldra och logik pa& sid 78. D& kan De Morgans lagar
skrivas i1 mdngdnotation s& hé4r:

(@ n B = ((a v (B

Cwa v B = (Lay n (LB

Illustrera De Morgans lagar i1 mdngdnotation med Venndiagram.

234

Losningen:

9

VL :

Komrlﬂmaﬂ(

yL:

A A

Kapitel 3 Datastrukturer och abstrakta datatyper, sid 132

C(An® = (CA)uv(CB)
v ? p
Snitt

Unvon

T ((anB)

. Somn
B

T
:(CA)T(%)

/C 3 Union

KomFlemon{,’

Union

Snit

mw S s (AvB)—

SE2h) o (9

l
Swit;

Ovn_3 1 Class

Modifiera klassen Fish
som private och metoderna som public.
tva publika metoder,

(sid 106)

s& héar:

fierade programmet gér samma sak som det ursprungliga.

using System;
class Fish priv

235

Deklarera datamedlemmarna
Forse klassen med ytterligare
sa att den nya klassen Fish priv har féljande
utseende. Modifiera programmet ArrayOfRef (sid 107) sa att det modi-

}

private string sort;
private float weight, size;

public Fish priv(string S, float w, float s)

{
sort = S;
weight = w;
size = s;
}
public int Price()
{
return (int) Math.Round(weight * 7.25f / 100);
}
public int Shipping()
{
return (int) Math.Round(weight * 0.02f + size * 0.1f);
}
public string AsString()
{
return sort + "\t " +
weight + "\t\t " + size + "\t\t " +
Price() + "\t " + Shipping() + "\n" ;
}

Ovn_3 1 Test
Modifiera programmet ArrayOfRef (sid 107) sa att det modifierade
programmet gér samma sak som det ursprungliga.

using System;
class ArrayOfRef ny

{

static void Main()

{

string fiskSort;
float fiskVikt, fiskLangd;
Fish priv[] £ = new Fish priv[5]; // Array av referenser

for (int i = 0; i < f.Length; i++)

{
Console.Write ("\n\tMata in sorten till fisk" + (i+l) +
". \tn) ;
fiskSort = Console.ReadLine() ; // Input
if (fiskSort.Length <= 7) fiskSort += '\t';
Console.Write("\tMata in vikten till fisk" + (i+l) +
". \tu) ;
fiskVikt = (float) Convert.ToDecimal (Console.ReadLine()) ;
Console.Write("\tMata in langden till fisk" + (i+1) + ":\t");
fiskLangd = (float) Convert.ToDecimal (Console.ReadLine())
f[i] = new Fish priv(fiskSort, fiskVikt, fiskLingd);
}
Console.Write ("\nFisksort\tVikt i g\tLdngd i cm\tPris\tFrakt\n" +

for (int i = 0; i < f.Length; i++)
236

Console.WriteLine (£f[i] .AsString()) ;

A A

Ovn 3 2
Skriv ett program som ldser in 10 heltal fran konsolen, lagrar dem 1
en array och skriver ut dem i omvdnd ordning.

using System;
class Ovn_2 2

{

static void Main()
int[] no = new int[10];

Console.WriteLine ("\n\tSkriv in 10 heltal:\n");
for (int i = 0; i <= 9; i++)
{
Console.Write("\tTal nr " + (i+l) + ":\t");
no[i] = int.Parse(Console.ReadLine()) ;

}

Console.WriteLine ("\nDina tal i omvdnd ordning:\n");
for (int 1 = 9; 1 >= 0; i--)
Console.Write (no[i] + "\t");

Console.WriteLine() ;

}

A A

Ovn_3 3.cs

Skriv ett program som ldser in text 1 gemener, lagrar den 1 en array
av char och skriver ut den framhdvd i versaler och med mellanslag
mellan varje tecken.

using System;
class Ovn_3_3

{

static void Main()

{

Console.Write ("\n\tSkriv in text:\t\t");
char[] text = Console.ReadLine() .ToCharArray () ;

Console.Write ("\n\tTexten framhiavd:\t"):;
for (int i = 0; i < text.Length; i++)

Console.Write("" + (char) (text[i] - 32) + ' ');
Console.WriteLine('\n');

}

A A

Oovn 3 4
Skriv ett program som frdgar efter anvidndarens fér- & efternamn, hdlsar

237

sedan anvidndaren 1 en utskrift med fullstdndiga namnet, férnamnets
ldngd samt efternamnets fdrsta & sista bokstav. L&s uppgiften generellt
utan att anvdnda information om ndgot speciellt fér- och efternamn.
using System;

class Ovn_3 4

static void Main()

{
char surnameO = '0'; // Undviker villkorlig initiering
Console.Write ("\n\tSkriv in ditt £6r- och efternamn:\t");
string input = Console.ReadLine();
char[] name = input.ToCharArray()

int i = 0;
while (name[i] !'= "' ') // Gar igenom endast férnamnet
{
i++;
if (name[i] == ' ') // Hittar f6r- och efternamnets avskiljare

surname0 = name[i+l]; // Hittar efternamnets fdrsta bokstav

Console.WriteLine ("\n\tHej, " + input +
"\n\tDitt fdérnamns lidngd &r " + i +
"\n\tDitt efternamns férsta bokstav &r " + surnameO +
"\n\tDitt efternamns sista bokstav &r " +

name [name .Length-1] + '\n');

}
}

A A

Ovn 3 5

Skriv ett program didr Main() ldser in en persons fullstdndiga namn
och hédlsar tillbaka med namnets initialer. Dessa ska bestdmmas och
skrivas ut 1 en annan metod - med huvudet: static void Initials-
(char[] name) - som anropas 1 Main().

using System;

class Ovn_3 5

static void Main()

{
Console.Write ("\n\tSkriv in ditt f£ér- och efternamn:\t");
string input = Console.ReadLine() ;
char[] dittNamn = input.ToCharArray();
Console.Write("\n\tHej, " + input +
"\n\n\tDina initialer ar\t\t\t");
Initials(dittNamn) ; // Anropet
Console.WriteLine('\n');
}
static void Initials(char[] name) // Metoden
{
int i = 0;
Console.Write (name[i]) ; // Férsta initialen
while (name[i] != "' ') // Gar igenom endast férnamnet
{
i++;
if (name[i] == "' ') // Hittar fér- och efternamnets

// avskiljare
238

Console.Write (name[i+1]); // Andra initialen

}

KA A

ovn 3 6

Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140
(tdnkbara hastigheter pd en motorvdg), lagrar dem i en array kallad
hastighet, berdknar och skriver ut deras medelvdrde med férklarande
text. Anvdnd klassen RandArray (sid 115) som extern modul.

F6r att detta program ska fungera maste klassen RandArray pa sid 115
inkluderas 1 samma Visual Studio projekt.

using System;
class Ovn_3 6

{

static void Main()
t Random r = new Random() ;
int[] hastighet = new int[1000];
RandArray.Rand (r, hastighet, 60, 140);
int sum = 0;
for (int i = 0; i <= 999; i++)
sum += hastighet[i];
Console.WriteLine ("\tMedelvardet av 1000 mdjliga hastigheter " +
"mellan 60 och 140 &r: " 4+ sum/1000 + '\n');
}
}

KA A

Oovn 3 7

Modifiera programmet Lista (sid 128) sd att sorteringen av slumpta-
len gbrs med vdr egen bubbelsorteringsmetod sort () (sid 121) istdl-
let fér med den férdefinierade List-metoden Sort(). Testa férst med
array-notationen som sort() &dr skriven i. F&rs6k sedan att skriva om
sort() till en List-version.

using System;

using System.Collections.Generic; // Krdvs foér List
class Lista

static void Main()

{ List<int> intlList = new List<int>(); // List-objekt av int
Random r = new Random() ;
int a =1, b = 1000;
Console.WriteLine (
"\n\t1l00 heltal mellan " + a + " och " + b +
" slumpas till ett List-objekt:\n");
RandList.Rand(r, intList, a, b); // Slump-tilldelning
Print.Out (intList) ; // Osorterad utskrift
Bubble.sort (intList) ; // List-sortering
Console.WriteLine (
"\tHeltalen sorteras med List-metoden Sort():\n");
Print.Out (intList) ; // Sorterad utskrift
}

239

Bubblelist.cs (List-versionen av Bubble.cs sid 121)

Separat fil i samma projekt som filen Ovn 5 7.cs

Sorterar heltal lagrade i arrayen t med en bubbelsorteringsalgoritm
using System;

using System.Collections.Generic;

class Bubble

public static void sort(List<int> t)

{
int temp;
for (int pass=0; pass<t.Count-1; pass++)
for (int i=0; i<t.Count-1; i++)
if (t[i] > t[i+1]) // Sortering i1 stigande
{ // ordning
temp = t[i]; // Algoritm fér platsbyte
t[i] = t[i+1]; // av de tva elementen
t[i+l] = temp; // t[i] och t[i+1]
}
}

Print.cs (sid 130)

Separat fil i samma projekt som filen Ovn 3 8.cs

Metoden Out() skriver ut en lista med en foreach-sats som
loopar igenom listans ALLA element

using System;
using System.Collections.Generic;
class Print

public static void Out(List<int> t)
{

Console.Write("\t");

int i = 0;

foreach (int element in t)

{

// Loop

Console.Write (element + " ") ;

if ((1 % 14 0) && (i '= 0))
Console.Write ("\n\t");

i++;

// Radbyte var
// 14:e utskrift

Console.WriteLine("\n");

RandList.cs (sid 129)

Separat fil i1 samma projekt som filen Ovn 3 8.cs
Metod Next () slumpar fram heltal mellan a och b och
lagrar dem 1 ett List-objekt med List-metoden Add()

using System;
using System.Collections.Generic;
class RandList

{
240

public static void Rand(Random r, List<int> no, int a, int b)

{
for (int i=0; i < 100; i++) // Hdr fylls listan
no.Add(r.Next(a, b)); // med slumptal

}

A A

Kapitel 4 Tilldmpningar, sid 155:

Oovn 4 1

Skriv ett program som ldser in en strdng, lagrar den 1 en array av
char och skriver ut den bakldnges. Anvdnd tekniken 1 programmet En-
cryptCharTest (sid 138) fér att omvandla den inldsta strdngen 1 en
array av char.

using System;

class Ovn_4_1

{
static void Main()
{
Console.Write("\n\tSkriv in text:\t\t");
char[] text = Console.ReadLine() .ToCharArray() ;
Console.Write ("\n\tTexten bakldnges:\t");
for (int i = text.Length-1; i >= 0; i--)
Console.Write (text[i]) ;
Console.WriteLine('\n');
}
}

A A

Oovn 4 2

Skriv ett program som skapar en tom fil, skriver 1 den texten ”Den
hér texten kommer fran mitt férsta C# filhanteringsprogram” och sedan
ldser fran den samt skriver ut innehdllet pa skdrmen. Som mall kan du
ta programmet WriteReadFile (sid 141) och modifiera den.

using System;
using System.IO;
class Ovn_4 2

{

static void Main()
{
string word;
StreamWriter fileForWrite = new StreamWriter ("Ovn_4 2.txt");
fileForWrite.WriteLine (// Skriver texten till filen
"\tDen hir texten kommer fran mitt " +
"férsta C# filhanteringsprogram.") g
fileForWrite.Close() ;

StreamReader fileForRead = new StreamReader ("Ovn_4_ 2.txt");
Console.WriteLine ("\n\tF6ljande text har skrivits fran " +
"programmet till filen.\n\n\t" +

"Nu ldses den fran filen:\n") ;
while (!fileForRead.EndOfStream)

241

word = fileForRead.ReadLine() ; // Liser texten frdn filen
Console.WriteLine (word) ; // Visar texten pa skdrmen

fileForRead.Close() ;
Console.WriteLine () ;

Ovn 4 3

Modifiera programmet frdn o6vn 4.2 ovan: Istdllet fOr att hardkoda
texten i programmet, lds in den sa att programmet skriver vilken in-
l4st text som helst till filen och ldser den sedan ddrifran.

using System;
using System.IO;
class Ovn_4 3

{
static void Main()
{
string word, text;
Console.Write ("\n\tSkriv en text som ska lagras i en fil:\t");
text = Console.ReadLine () ; // Ldser texten fran skdrmen
StreamWriter fileForWrite = new StreamWriter ("Ovn_4 3.txt");
fileForWrite.WriteLine (text) ; // Skriver texten till filen
fileForWrite.Close() ;
StreamReader fileForRead = new StreamReader ("Ovn_4_ 3.txt");
Console.WriteLine ("\n\tFéljande text har lasts fran skdrmen" +
" och skrivits till filen.\n\n\t" +
"Nu lises den fran filen och visas har:\n");
while (!'fileForRead.EndOfStream)
{
word = fileForRead.ReadLine () ; // Liser texten frdn filen
Console.WriteLine ("\t\t" + word); // Visar texten pa& sk&rmen
}
fileForRead.Close() ;
Console.WriteLine() ;
}
}
ovn_4_4

Varje gang man kér programmen Ovn 4 2 eller Ovn 4 3 efter férsta
gdngen, rensas och d4dterstdlls filen och endast den senaste texten
hamnar i den. Skriv ett program som gbr samma sak som Ovn_ 4 3 men
bibehdller filens gamla innehdll och ldgger till den nyinldsta tex-
ten utan att radera gammal data. Du kan 4dstadkomma det genom att
6ppna filen i append mode.

using System;
using System.IO;
class Ovn_4_4

static void Main()

{
242

string word, text;
Console.Write ("\n\tSkriv en text som ska lagras i en fil:\t");
text = Console.ReadLine() ; // Lidser texten frdn skdrmen

StreamWriter appendFil = new StreamWriter ("Ovn_ 4 4.txt",
append: true) ;
// Filen &6ppnas fér append
appendFil .WriteLine (text) ; // Inldst text ldggs till
appendFil.Close() ; // filen

StreamReader fileForRead = new StreamReader ("Ovn_4_ 4.txt");
Console.WriteLine ("\n\tF6ljande text har l&asts fran skarmen" +
" och lagts till filen.\n\n\t" +
"Nu lises den fran filen och visas hiar:\n");
while (!fileForRead.EndOfStream)
{
word = fileForRead.ReadLine() ; // Lidser texten frdn filen
Console.WriteLine ("\t\t" + word); // Visar texten pa skdrmen
}
fileForRead.Close() ;
Console.WriteLine() ;

Ovn_4_5 Class

Modifiera klassen RandPasswd (sid 148) som genererar ett slumplbésen-
ord, genom att anvdnda en annan, ny l&senordpolicy: 3 gemener, 2 ver-
saler samt ? och @) och 2 specialtecken.

using System;
class RandPasswd Ny

public static void OnePassword(Random r, char[] p)

{ for (int i=0; i < 3; i++)
pli] = (char) r.Next(97, (122 + 1));// 3 smd bokstdver
for (int i=3; i < 5; i++)
pli] = (char) r.Next(63, (90 + 1)); // 2 versaler samt ? och @
for (int i=5; i < 7; i++)
pl[i] = (char) r.Next(33, (47 + 1)); // 2 specialtecken
}

Ovn_4_5 Test
Testa den nya policyn 1 programmet RandPasswdTest f&6r att skriva ut
de nya slumpl&senorden samt tillhérande anvdndarnamn till en fil

using System;
using System.IO;

class RandPasswdTest
static void Main()

char[] password = new char[8];
Random r = new Random() ;

243

}

string word;

Console.Write ("\n\tHur manga anvadndarnamn med ldsenord " +
"vill du ha? ")

int antal = Convert.ToInt32 (Console.ReadLine()) ;

StreamWriter fileForWrite = new StreamWriter ("userPasswd.txt");

for (int i=1; i<=antal; i++)

RandPasswd Ny.OnePassword(r, password); // Slumpl&senord
fileForWrite.WriteLine ("\tuser" + i + // Skrivs till fil
"\t\t" + new String(password)) ;

}

fileForWrite.Close() ;

StreamReader fileForRead = new
StreamReader ("userPasswd. txt") ;
Console.WriteLine ("\n\tVarsdgod, detta stadr nu" +
" i filen userPasswd.txt:\n");

while (!fileForRead.EndOfStream)
{

word = fileForRead.ReadLine () ; // Lidses fran fil

Console.WriteLine (word) ; // Skrivs till sk&rm
}
fileForRead.Close() ;
Console.WriteLine() ;

S ok sk ok

244

Programforteckning

Program Amne Sida
Kapitel 1 Algoritmer och programmering
Morgonsyssla Algoritm: Ex. pa pseudokod / flodesschema 20/23
PrimitivesCs Enkla datatyper i C# 31
InputCs Inl&sning av data 34
(Un) CondInit Villkorlig initiering 37
Collatz Algoritm & program med selektion och repetition (loop) 39
Collatz_mod Metoder och program i C# 42
Collatz_Test Modularisering av programmet Collatz 42
MiniSort Algoritm for platsbyte av tva objekt 44
NoSort Misslyckad modularisering av programmet MiniSort 45
CallByVal Vérdeanrop 48
CallByRef Referensanrop 52
Swapping Modularisering av programmet MiniSort 51
OutParam In- och utparametrar 53
Kapitel 2 Logik for blivande programmerare
AND_OR De logiska operatorerna OCH och ELLER 63
TruthTab Logiska variabler med datatypen bool, sanningstabeller 67
GuessNEG Gissa tal med NEGATION som logisk operator 69
Logiska uttryck, dubbel negation
Passwd Programserien Testa I6senord med NEGATION 73
String-metoden equals ()
PasswdCaps Test av tva l6senord med De Morgans lag 75
Kapitel 3 Datastrukturer och abstrakta datatyper
ArrayObj Ny datastruktur av sammansatt typ 99
ArrayRef 104
Fish Deklarerar klassen Fish 106
ArrayOfRef Array av referenser till Fish-objekt 107
ArrayParam Array som parameter i en metod 110
DoRand Hantering av slumptal i C# 114
RandArray Metod som slumpar fram en array av heltal 117
Search Metod som soker efter ett element i en array 119
Bubble Laser en tabell fran en fil och visar innehallet 121
G_Bubble Generiska metoder 121

245

Program Amne Sida
Lista Demonstrerar dynamiska arrays: Listor 128
RandList Klassen RandList 129
Print foreach i listor 130
Kapitel 4 Tillampningar
EncryptStr Kryptering av strangar 139
EncryptChar Kryptering av text, tekenvis 139
RandPasswTest Skriver till en fil ett antal anvdndarnamn samt slumpvis 146
genererade l6senord, laser fran den och visar innehéllet
RandPasswd Metod som skapar slumpvis genererade l6senord 148
EncryptFile Kryptering av filer med en slumpkrypteringsnyckel 151
EncryptText Krypterar text (annan variant) 152
ReadShowFile Laser en fils innehall och visar det pa skarmen 154
WriteFile Skriver text till en fil 153
Kapitel 5 Datastrukturer i relationsdatabaser
FirstDatabase Laddar en databas till C# och etablerar kontakt med den 179
Visar databasens tabeller i en grafisk miljo
SQLclient Skickar SQL-fragor fran C# till databasen 185
Visar frgornas resultat i en grafisk miljo
Kursverksamhet Skapar en tom databas i C#, etablerar kontakt med den
och fyller den med tabeller 197

Specificerar tabellernas kolumner samt deras datatyper
Definierar tabellernas primér- och frammande nycklar
Bestammer relationer mellan databasens tabeller
Fyller tabellerna med data.

246

A

Abstraktion

ADO.NET-objektmodellen

Algol

Algoritm
Exempel

Argument

Array
Default-initiering
Definition
Hakparenteser
Indexering
Indexregeln
Initiering
Parameter i metoder
Referensanrop

Array av referenser

Arv

Assembler

Attribut

Basic
bool
Bubbelsortering

Cobol

ComboBox
Convert.ToInt32()
CREATE TABLE-satsen

D

Data Definition Language
Data Sources
Databas
Modularisering
Databasmodellering
Databasobjekt
DataGridView-kontroll
Datamedlem

88,

Register

88
170

15
16
46
97
101
99
101
98
98
99
110
110
106
91

198

67
120

192
36
177

177
180
158
160
197
204
179

90

247

DateTime-klassen
De Morgans lagar
Deklarativt sprak

Element

Entitet

Entity-Relationship Modeling
Equals()

Filhantering
Append
Append mode

Flédesplan
Exempel

Fortran

FORTRAN

Frammande nyckel

Falt

H

66
76
169

97
198
198

74

141
144
144
22
23

167
161

Héandelsestyrd programmering 12

Hognivasprak

Identity

Implementation

Indata

Index

Indexregeln

Inmatning

Instruktion
Huvudinstruktion
Underinstruktion

Java
Join

7

177,200
93
34
97
98
34

20
20

10
172

K
Klient-Server-modellen 169
Kontrollstruktur 22
Kryptering 138

Fil 150

Filer 150

Text 138
Kryptering av filer 150
Kursverksamhet 197

L
Label 12
LIKE 176
Lista 128
Logisk operator 62

ELLER 65
NEGATION 69
OCH 64
Programexempel 64
Logiska lagar 64
Lagnivasprak 7

M
Maskinkod 18
Metod 41,90

Begreppet 41
Modularisering 92
Monstermatchning 176

N

NEGATION 69
Dubbel 71
NULL i SQL 161

0)

Objekt 88
Objektorienterad design 14,87

Objektorienterad programmering 14,
87

Operator
Logisk 69
ORDER BY 175

248

Paradigmskifte
Parameter
Pascal
Polymorfism
Post
Primarnyckel
Programmering
Historik
Projektion
Pseudokod
Punktnotation

Radsortering
Referensanrop

Relation
Relationsdatabasmodellen
Returvarde

Sanningstabell
Script
SELECT-satsen
Selektion
slumpArray-klassen
Slumplésenord
Slumptal

Array
Sortering

Platsbyte
sQL

Regler och konventioner
SQLiC#
SQL-klient
Structured Query Language
Strukturering av kod
Sokning

T

Tabell
Liknelse med klass

14, 87
41

91
161
167

13

172
20
89

175
48
163
159
41

64
178

172
172, 173
115

146

114

115

120

39, 44
171

178
185, 210
185

171

92

118

160
162

U
UML
Uttryck
Logiskt
V,W

View Designer
Villkor

14,19, 87,90

71

182
21

249

Villkorlig initiering
WHERE-satsdelen i SQL

A

Ateranvandning av kod

36
174

92

